Skip to main content

Effects of an Inhibitor of Proteoglycan Biosynthesis on Neuron-Induced Schwann Cell Proliferation and Basal Lamina Formation By Schwann Cells

  • Conference paper
Mesenchymal-Epithelial Interactions in Neural Development

Part of the book series: NATO ASI Series ((ASIH,volume 5))

Abstract

It is now known that proteoglycans are components not only of extracellular matrices but are also found associated with the plasma membrane. Cell surface proteoglycans that have been described and characterized can be relatively small molecules (140kd, Carlstedt et al., 1983) or considerably larger (~400 kd, Woods et al., 1985) and contain mainly chondroitin, dermatan and/or heparan sulfate chains on a polypeptide chain which may be either peripherally or integrally associated with the cell membrane (Hook et al., 1984; c.f. Bernfield, this volume). These molecules contrast with extracellular matrix proteoglycans both in their location and size, since all matrix proteoglycans are extremely large (>500kd) (Caplan, 1984; Anderson and Fambrough, 1983; Hassell et al., 1985). We have studied the function of both cell surface and extracellular matrix proteoglycans in peripheral nerve tissues by the use of an inhibitor of proteoglycan biosynthesis, 4-methyl umbelliferyl-β-D-xyloside.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguayo, A.J., J.M. Peyronard, L.C. Terry, J.S. Romine, and G.M. Bray (1976) Neonatal neuronal loss in rat superior cervical ganglia: Retrograde effects on developing preganglionic axons and Schwann cells. J. Neurocytol. 5: 137–155.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, M.J., and D.M. Fambrough (1983) Aggregates of acetylcholine receptors are associated with plaques of a basal lamina heparan sulfate proteoglycan on the surface of skeletal muscle fibers.I. 97: 1396–1411.

    CAS  Google Scholar 

  • Brockes, M.P., K.L. Fields, and M.C. Raff (1979) Studies on cultured rat Schwann cell. I. Establishment of purified populations from cultures of peripheral nerve.–. 165: 105–118.

    CAS  Google Scholar 

  • Bunge, R.P., Bunge, M.B., and C.E. Eldridge (1986) Linkage between axonal ensheathment and basal lamina production by Schwann cells. Ann. Rev. Neurosci. 9: 305–328.

    Article  PubMed  CAS  Google Scholar 

  • Caplan, A.I. (1984) Cartilage. Sei. American (Oct.): 84–94.

    Google Scholar 

  • Carey, D.J., C.F. Eldridge, C.J. Cornbrooks, R. Timpl, and R.P. Bunge (1983) Biosynthesis of type IV collagen by cultured rat Schwann cells. J. Cell Biol. 91: 473–479.

    Article  Google Scholar 

  • Carlstedt, I., L. Coster, A. Malmstrom and L.-A. Fransson (1983) Proteoheparan sulfate from human skin fibroblasts. Isolation and structural characterization. J. Biol. Chem. 258: 11629–11635.

    PubMed  CAS  Google Scholar 

  • Cassel, D., P.M. Wood, R.P. Bunge and L. Glaser (1982) Mitogenicity of brain axolemma membranes and soluble factors for dorsal root ganglia Schwann cells. J. Cell. Biochem. 18: 433–445.

    Article  PubMed  CAS  Google Scholar 

  • DeVries, G.H., J.L. Salzer, and R.P. Bunge (1982) Axolemma-enriched fractions isolated from PNS and CNS are mitogenic for cultured Schwann cells. Dev. Brain. Res. 3: 295–299.

    Article  Google Scholar 

  • DeVries, G.H., L.N. Minier, and B.L. Lewis (1983) Further studies on the mitogenic response of cultured Schwann cells to rat CNS axolemma-enriched fractions. Dev. Brain Res. 9: 87–93.

    Article  Google Scholar 

  • Eldridge, C.F., M.B. Bunge, and R.P. Bunge (1985) Serum ascorbic acid regulates myelin formation and basal lamina assembly by Schwann cells in vitro. Soc. Neurosci. Abstr. 11: 986.

    Google Scholar 

  • Eldridge, C.F., A.Y. Chiu, R.P. Bunge, J.R. Sanes, and C.J. Cornbrooks (1986) Basal lamina-associated heparan sulfate proteoglycan in the rat peripheral nervous system: Characterization and localization using monoclonal antibodies. J. Neuro- cytol, in press.

    Google Scholar 

  • Fujiwara, S., H. Wiedemann, R. Timpl, A. Lustig, and J. Engel (1984) Structure and interactions of heparan sulfate proteoglycans from a mouse tumor basement membrane. Eur. J. Biochem. 143: 145–157.

    Article  PubMed  CAS  Google Scholar 

  • Galligani, L., J. Hopwood, N.B. Schwartz, and A. Dorf man (1975) Stimulation of synthesis of free chondroitin sulfate chains by ß-D-xyloside in cultured cells. J. Biol. Chem. 250: 5400–5406.

    PubMed  CAS  Google Scholar 

  • Gorbunoff, M.J. (1984) The interactions of proteins with hydroxylapatite. Analyt. Biochem. 136: 425–432.

    Article  PubMed  CAS  Google Scholar 

  • Hassell, J.R., W.C. Leyshon, S.R. Ledbetter, B. Tyree, S. Suzuki, M. Kato, K. Kimata, and H.K. Kleinman (1985) Isolation of two forms of basement membrane proteoglycans. J. Biol. Chem. 260: 8098–8105.

    PubMed  CAS  Google Scholar 

  • Hook, M., L. Kjellen, S. Johanson, and J. Robinson (1984) Cell-surface glycosaminogly- cans. Ann. Rev. Biochem. 53: 847–869.

    Article  PubMed  CAS  Google Scholar 

  • Kanwar, Y.S., V.C. Hascall, M.L. Jakubowski, and J.T. Gibbons (1984) Effect of ß-D- xyloside on the glomerular proteoglycans. I. Biochemical studies. J. Cell Biol. 99: 715–722.

    Article  PubMed  CAS  Google Scholar 

  • Kleinman, H.K., M.L. McGarvey, J.R. Hassell, and G.R. Martin (1983) Formation of a supramolecular complex is involved in the reconstruction of basement membrane components. Biochemistry 22: 4969–4974.

    Article  PubMed  CAS  Google Scholar 

  • Lark, M.W., and L.A. Culp (1984) Multiple classes of heparan sulfate proteoglycans from fibroblast substratum adhesion sites. J. Biol. Chem. 259: 6773–6782.

    PubMed  CAS  Google Scholar 

  • Ledbetter, S.R., and 3.R. Hassell (1986) ß-D-xyloside-mediated alteration in the synthesis of basement membrane proteoglycan. Arch. Biochem. Biophys. 246, in press.

    Google Scholar 

  • Lohmander, L.S., and V.C. Hascall (1979) Effects of 4-methyl umbelliferyl-ß-D-xyloside on chondrogenesis and proteoglycan synthesis in chick limb bud mesenchymal cell cultures. J. Biol. Chem. 254: 10551–10561.

    PubMed  CAS  Google Scholar 

  • Maresh, G.A., E.A.G. Chernoff, and L.A. Culp (1984) Heparan sulfate proteoglycans of human neuroblastoma cells: Affinity fractionation on columns of platelet factor-4. Arch. Biochem. Biophys. 233: 428–437.

    Article  PubMed  CAS  Google Scholar 

  • Markwell, M.A., S.M. Aaas, L. Bieber and N.E. Tolbert (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem. 82: 206–210.

    Article  Google Scholar 

  • Meador-Woodruff, J.H., B.L. Lewis, and G.H. DeVries (1984) Cyclic AMP and calcium, as potential mediators of stimulation of cultured Schwann cell proliferation by axo- lemma-enriched and myelin-enriched membrane fractions. Biochem. Biophys. Res. Comm. 122: 373–380.

    Article  PubMed  CAS  Google Scholar 

  • Moya, F., M.B. Bunge, and R.P. Bunge (1980) Schwann cells proliferate but fail to differentiate in defined medium. Proc. Nat. Acad. Sei., (USA) 77: 6902–6906.

    Article  CAS  Google Scholar 

  • Peterson, G.L. (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analyt. Biochem. 83: 346–356.

    Article  PubMed  CAS  Google Scholar 

  • Ratner. N.L., L. Glaser, and R.P. Bunge (1984) PC12 cells as a source of neurite-derived cell surface mitogen, which stimulates Schwann cell division. J. Cell Biol. 98: 1150–1155.

    Article  PubMed  CAS  Google Scholar 

  • Ratner, N., R.P. Bunge, and L. Glaser (1985) A neuronal cell surface heparan sulfate proteoglycan is required for dorsal root ganglion neuron stimulation of Schwann cell proliferation. J. Cell Biol. 101: 744–754.

    Article  PubMed  CAS  Google Scholar 

  • Ratner, N., A. Elbein, S. Porter, M.B. Bunge, R.P. Bunge, and L. Glaser (1986a) Aspara- gine-linked sugars are not required for many neuron-neuron and neuron-Schwann cell interactions. J. Cell Biol., in press.

    Google Scholar 

  • Ratner, N., P. Wood, L. Glaser, and R.P. Bunge (1986b) Further characterization of the neuronal cell surface protein mitogenic for Schwann cells. In Neuron-Glial Communication in Development and Regeneration, H. Althaus and W. Seifert, eds., Academic Press, London, in press.

    Google Scholar 

  • Robinson, H.C., M.J. Brett, Tralaggen, D.A. Lowther, and M. Okayama (1975) The effect of d-xylose, ß-D-xylosides and ß-D-galactosides on chondroitin sulphate biosynthe- sis in embryonic chicken cartilage. Biochem. J. 148: 25–34.

    PubMed  CAS  Google Scholar 

  • Salzer, J.L., R.P. Bunge, and L. Glaser (1980a) Studies of Schwann cell proliferataion. III. Evidence for the surface localization of the neurite mitogen. J. Cell Biol. 84: 767–778.

    Article  PubMed  CAS  Google Scholar 

  • Salzer, 3.L., A.K. Williams, L. Glaser, and R.P. Bunge (1980b) Studies of Schwann cell proliferation. II. Characterization of the stimulation and specificity of the response to a neurite membrane fraction. J. Cell Biol. 184: 753–766.

    Article  Google Scholar 

  • Schwartz, N.B. (1977) Regulation of chondroitin synthesis. Effect of ft-xylosides on synthesis of chondroitin sulfate proteoglycan, chondroitin sulfate chains, and core protein. J. Biol. Chem. 252: 6316–6321.

    PubMed  CAS  Google Scholar 

  • Schwartz, N.B., P.-L. Ho, and A. Dorfman (1976) Effects of ft-xylosides on synthesis of cartilage-specific proteoglycan in chondrocyte cultures. Biochem. Biophys. Res. Comm. 71: 851–856.

    Article  PubMed  CAS  Google Scholar 

  • Sobue, B., and D. Pleasure (1985) Adhesion of axolemmal fragments to Schwann cells: A signal- and target-specific process closely linked to axolemmal induction of Schwann cell mitosis. J. Neurosci. 5: 379–387.

    PubMed  CAS  Google Scholar 

  • Sobue, G., B. Kreider, A. Asbury and D. Pleasure (1983) Specific and potent mitogenic effect of axolemmal fraction on Schwann cells from rat sciatic nerves in serum- containing and defined media. Brain Res. 280: 263–275.

    Article  PubMed  CAS  Google Scholar 

  • Timpl, R., R. Heilwig, P.G. Robey, S.I. Rennard, J.-M. Foidart, and G.M. Martin (1979) Laminin - glycoprotein from basement membranes. J. Biol. Chem. 254: 9933–9937.

    PubMed  CAS  Google Scholar 

  • Thompson, H.A., and B.S. Spooner (1983) Proteoglycan and glycosaminoglycan synthesis in embryonic mouse salivary glands: Effects of B-D-xyloside, and inhibitor of branching morphogenesis. J. Cell Biol. 96: 1443–1450.

    Article  PubMed  CAS  Google Scholar 

  • Weber, S.J., J. Engel, H. Wiedemann, R.W. Glanville, and R. Timpl (1984) Subunit structure and assembly of the globular domain of basement-membrane collagen type-IV. Eur. J. Biochem. 139: 401–410.

    Article  PubMed  CAS  Google Scholar 

  • Wood, P.M., and R.P. Bunge (1975) Evidence that sensory axons are mitogenic for Schwann cells. Nature, 256: 662–664.

    Article  PubMed  CAS  Google Scholar 

  • Woods, A., J.R. Couchman, and M. Hook (1985) Heparan sulfate proteoglycans of rat embryo fibroblasts. A hydrophobic form may link cytoskeleton and matrix components. J. Biol. Chem. 260: 10872–10879.

    PubMed  CAS  Google Scholar 

  • Yanagashita, M., and V.C. Hascall (1984) Proeoglycans synthesized by rat ovarian granulosa cells in culture. Isolation, fractionation, and characterization of proteoglycans associated with the cell layer. J. Biol. Chem. 259: 10260–10269.

    Google Scholar 

  • Yoshino, J.E., M.P. Dinneen, B.L. Lewis, J.H. Meador-Woodruff, and G.H. DeVries (1984) Differential proliferative responses of cultured Schwann cells to axolemma- and myelin-enriched fractions. I. Biochemical studies. J. Cell Biol. 99: 2309–2313.

    Article  PubMed  CAS  Google Scholar 

  • Yurchenko, P.D. (1986) Basement membrane collagen, laminin and heparan sulfate proteoglycan self-assemble into a complex heteropolymer using domain-specific interactions. Fed. Proc. 45: 1815a.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ratner, N., Eldridge, C., Bunge, R., Glaser, L. (1987). Effects of an Inhibitor of Proteoglycan Biosynthesis on Neuron-Induced Schwann Cell Proliferation and Basal Lamina Formation By Schwann Cells. In: Wolff, J.R., Sievers, J., Berry, M. (eds) Mesenchymal-Epithelial Interactions in Neural Development. NATO ASI Series, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71837-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71837-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71839-7

  • Online ISBN: 978-3-642-71837-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics