Skip to main content

Components of the Extracellular Matrix (Collagens, Elastin, Glyco-Proteins and Proteoglycans)

  • Conference paper

Part of the book series: NATO ASI Series ((ASIH,volume 5))

Abstract

Eukaryotic cells are surrounded by a complex assembly of macromolecules termed connective tissue or extracellular matrix (ECM)*. This specialized tissue comprises 1) the pericellular matrix of components interacting with structures of the cell membrane, 2) the classical interstitium, which occupies the intercellular spaces, when cells are separated from each other over longer distances and 3) basement membranes (BM), which support epithelial, endothelial and certain mesenchymal cells. The ECM is indispensable for the development of multicellular organisms. It is produced by the cells embedded in it, provides cohesiveness, and above all, directs these cells in that it tuns on, modifies or maintains their gene expression (for earlier studies on this subject refer to Slavkin and Greulich, 1975).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi, E., and T. Hayashi (1985) In vitro formation of fine fibrils with a D-periodic banding pattern from type V collagen. Collagen Rel. Res. 5: 225–232.

    CAS  Google Scholar 

  • Akiyama, S.K., and K. Yamada (1985) Comparison of evolutionary distinct fibronections: Evidence for the origin of plasma and fibroblast cellular fibronectin from a single gene. J. Cell. Biochem. 27: 97–107.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J.C. (1976) Glycoproteins of the connective tissue matrix. Int. Rev. Connect. Tissue Res. 7: 251–322.

    PubMed  CAS  Google Scholar 

  • Bach, P.R., and J.P. Bentley (1980) Structural glycoprotein, fact or artefact. Connect. Tissue Res. 7: 185–196.

    Article  CAS  Google Scholar 

  • Barlow, D.B., N.M. Green, M. Kurkkienen, and B.L.M. Hogan (1984) Sequencing of laminin B chain cDNAs reveals C-terminal regions of coiled-coilalpha-helix. EMBO J. 3: 2355–2362.

    PubMed  CAS  Google Scholar 

  • Baron-Van Evercooren, A., H.K. Kleinman, S. Ohno, P. Marangos, J.P. Schwartz, and M.E. Dubois-Dalcq (1982) Nerve growth factor, laminin and fibronectin promote nerve growth in human fetal sensory ganglia neurons. J. Neurosci. Res. 8: 179–193.

    Article  PubMed  CAS  Google Scholar 

  • Barsky, S.H., G.P. Siegal, F. Janotta, and L.A. Liotta (1983) Loss of basement membrane components by invasive tumors but not by their benign counterparts. Lab. Invest. 49: 140–147.

    PubMed  CAS  Google Scholar 

  • Becker, 3., D. Schuppan, H. Benzian, T. Bals, E.G. Hahn, C. Cantaluppi, and P. Reichart (1986a) Immunohistochemical distribution of collagens type IV, V, VI and procollagens type I and III in human alveolar bone and dentine. J. Historchem. Cytochem., in press.

    Google Scholar 

  • Becker, J., D. Schuppan, E.G.Hahn, G. Albert, and P. Reichart (1986b) The immunohistochemical distribution of collagens tpye IV, V, VI and of laminin in the human oral mucosa. Archs. Oral Biol. 31: 179–186.

    Article  CAS  Google Scholar 

  • Bentz, H., N.P. Morris, L.W. Murray, L.Y. Sakai, D.W. Hollister, and R.E. Burgeson (1983) Isolation and partial characterization of a new human collagen with an extended triple-helical structural domain. Proc. Natl. Acad. Sci. (USA) 80: 3168–3172.

    Article  CAS  Google Scholar 

  • Benya, P.D. (1980) EC collagen: Biosynthesis by corneal endothelial cells and separation from type IV without pepsin treatment or denaturation. Renal Physiol. 3: 30–35.

    PubMed  CAS  Google Scholar 

  • Benya, P.D., and S.R. Padilla (1986) Isolation and characterization of type VIII collagen synthesized by cultured rabbit corneal endothelial cells. J. Biol. Chem. 261: 4160–4169.

    PubMed  CAS  Google Scholar 

  • Boedtker, H., and S. Aho (1984) Collagen gene structure: The paradox may be resolved. Biochem. Soc. Symp. 49: 67–84.

    PubMed  CAS  Google Scholar 

  • Bornstein, H., and H. Sage (1980) Structurally distinct collagen types. Ann. Rev. Biochem. 49: 957–1003.

    Article  PubMed  CAS  Google Scholar 

  • Broeck, D.L., J. Madri, E.G. Eikenberry, and B. Brodsky (1985) Characterization of the tissue form of type V collagen from chick bone. J. Biol. Chem. 260: 555–562.

    Google Scholar 

  • Burgeson, R.E., F. El Adli, I.I. Kaitila, and D.W. Hollister (1976) Fetal membrane collagens: Identification of two new collagen alpha chains. Proc. Natl. Acad. Sci. (USA) 73: 2579–2583.

    Article  CAS  Google Scholar 

  • Burgeson, R.E., and W.E. Hollister (1979) Collagen heterogeneity in human cartilage: Identification of several new collagen chains. Biochem. Biophys. Res. Commun. 87: 1124–1131.

    Article  PubMed  CAS  Google Scholar 

  • Butkowski, R.J., J. Wieslander, B.J. Wisdom, J.F. Barr, M.E. Noelken, B.G. Hudson (1985) Properties of the globular domain of type IV collagen and its relationship to the Goodpasture antigen. J. Biol. Chem. 260: 3939–3947.

    Google Scholar 

  • Butler, W.T. (1984) Matrix macromolecules of bone and dentin. Collagen Rel. Res. 4: 297–307.

    CAS  Google Scholar 

  • Carlin, B., R. Jaffe, B. Bender, and A.E. Chung (1981) Entactin, a novel basal lamina- associated glycoprotein. J. Biol. Chem. 256: 5209–5214.

    PubMed  CAS  Google Scholar 

  • Chiquet, M., and D.M. Farmbrough (1984) Chick myotendinous antigen II. A novel extracellular glycoprotein complex consisting of large disulfide-linked subunits. J. Cell Biol. 98: 1937–1946.

    Article  PubMed  CAS  Google Scholar 

  • Chung, A.E., R. Jaffe, I.L. Freeman, J.P. Vergnes, J.E. Bragniski, and B. Carlin (1979) Properties of a basement membrane related glycoprotein synthesized in culture by a mouse embryonal carcinoma-derived cell line. Cell 16: 277–287.

    Article  PubMed  CAS  Google Scholar 

  • Chung, E., R.K. Rhodes, and E.J. Miller (1976) Isolation of three collagenous components of probable basement membrane origin from several tissues. Biochem. Biophys. Res. Commun. 71: 1167–1174.

    Article  PubMed  CAS  Google Scholar 

  • Cleary, E.G., and M.A. Gibson (1983) Elastin-associated microfibrils and microfibrillar protein. Int. Rev. Connect. Tissue Res. 10: 97–209.

    PubMed  CAS  Google Scholar 

  • Colombatti, A., G.M. Bressan, I. Castellani, and D. Volpin (1985) Glycoprotein 115, a glycoprotein isolated from chick blood vessels is widely distributed in connective tissue. J. Cell Biol. 100: 18–26.

    Article  PubMed  CAS  Google Scholar 

  • Dickneite, G., H.H. Sedlacek, R. Timpl, and F.R. Seiler (1985) Tumor growth and metastasis increases the serum concentration of basement membrane proteins. Behring Inst. Mitt. 78: 159–166.

    PubMed  Google Scholar 

  • Duband, J.L., S. Rocher, W.T. Chen, K.M. Yamada, and J.P. Thiery (1986) Cell adhesion and migration in the early vertebrate embryo: Location and possible role of the putative fibronectin receptor complex. J. Cell Biol. 102: 160–178.

    Article  PubMed  CAS  Google Scholar 

  • Dziadek, M., S. Fujiwara, M. Paulsson, and R. Timpl (1985a) Immunological characterization of basement membrane types of heparan sulfate proteoglycan. EMBO J. 4: 905–912.

    PubMed  CAS  Google Scholar 

  • Dziadek, M., M. Paulsson, R. Deutzmann, R. Timpl, S. Weber, and J. Engel (1985b) Structure and function of nidogen. In Basement Membranes, S. Shibata, ed., pp. 13–23. Elsevier, New York.

    Google Scholar 

  • Edgar, E., R. Timpl, and H. Thoenen (1984) The heparin-binding domain of laminin is responsible for its effects on neurite outgrowth and neuronal survival. EMBO J. 3: 1463–1467.

    PubMed  CAS  Google Scholar 

  • Engvall, E., H. Hessle, and G. Klier (1986) Molecular assembly, secretion, and matrix deposition of type VI collagen. J. Cell Biol. 102: 703–710.

    Article  PubMed  CAS  Google Scholar 

  • Erickson, H.P., and J.L. Inglesias (1984) A six-armed oligomer isolated from cell-surface fibronection preparations. Nature (Lond.) 311: 267–269.

    Article  CAS  Google Scholar 

  • Epstein, E.H., and N.H. Munderloh (1978) Human skin collagen: Presence of type I and type 111 at all levels of the dermis. J. Biol. Chem. 253: 1336–1337.

    PubMed  CAS  Google Scholar 

  • Eyre, D.R. (1980) Collagen: Molecular diversity in the body’s protein scaffold. Science 207: 1315–1322.

    PubMed  CAS  Google Scholar 

  • Fessler, J.H., K.J. Droege, K.G. Duncan, and L.I. Fessler (1985) Biosynthesis of collagen. J. Cell. Biochem. 28: 31–37.

    Article  PubMed  CAS  Google Scholar 

  • Fessler, J.H., and L.I. Fessler (1978) Biosynthesis of procollagen. Ann. Rev. Biochem. 47: 129–162.

    Article  PubMed  CAS  Google Scholar 

  • Fessler, L.I., C.A. Kumamato, M.E. Meis, and J.H. Fessler (1981a) Assembly and processing of procollagen V (AB) in chick blood vessels and other tissues. J. Biol. Chem. 256: 9640–9645.

    PubMed  CAS  Google Scholar 

  • Fessler, L.I., W.J. Robinson, and J.H. Fessler (1981b) Biosynthesis of procollagen [(proαlV)2 (pro 2V)] by chick tendon fibroblasts and procollagen (proalV)3 by hamster lung cell cultures. J. Biol. Chem. 256: 9646–9651.

    PubMed  CAS  Google Scholar 

  • Fietzek, P.P., and K. Kuhn (1976) The primary structure of collagen. Int. Rev. Connect. Tissue Res. 7: 1–60.

    PubMed  CAS  Google Scholar 

  • Fleischmajer, R., R. Timpl, L. Tudermann, L. Raisher, M. Wiestner, J.S. Perlish, and P.N. Graves (1981) Ultrastructural identification of extension aminopropeptides of type I and 111 collagens in human skin. Proc. Natl. Acad. Sci. (USA) 78: 7360–7364.

    Article  CAS  Google Scholar 

  • Fujiwara, S., H. Wiedemann, R. Timpl, A. Lustig, and J. Engel (1984) Structure and inter¬actions of heparan sulfate proteoglycans from a mouse tumor basement membrane. Eur. J. Biochem. 143: 145–157.

    Article  PubMed  CAS  Google Scholar 

  • Furcht, L.T. (1983) Structure and function of the adhesive glycoprotein fibronectin, Mol. Cell. Biol. 1: 53–117.

    Google Scholar 

  • Furthmayr, H., H. Wiedemann, R. Timpl, E. Odermatt, and J. Engel (1983) Electron microscopical approach to a structural model of intima collagen. Biochem. J. 211: 303–311.

    PubMed  CAS  Google Scholar 

  • Gay, S., and E.J. Miller (1978) Collagen in the Physiology and Pathology of Connective Tissue. Fischer, Stuttgart.

    Google Scholar 

  • Gay, S., A. Martinez-Hernandez, R.K. Rhodes, and E.J. Miller (1981) The collagenous exocytoskeleton of smooth muscle cells. Collagen Rel. Res. 1: 377–384.

    CAS  Google Scholar 

  • Gibson, G.J., and M.H. Flint (1985) Type X collagen synthesis by chick sternal cartilage and its relationship to endochondral development. J. Cell Biol. 101: 277–284.

    Article  PubMed  CAS  Google Scholar 

  • Glanville, R.W., T. Voss, and K. Kuehn (1982) A comparison of the flexibility of molecules of basement membrane and interstitial collagens. In New Trends in Basement Membrane Research, K. Kuehn, H.H. Schoene, and R. Timpl, eds., pp. 69–77. Raven Press, New York.

    Google Scholar 

  • Gosline, J.M., and J. Rosenbloom (1984) Elastin. In Extracellular Matrix Biochemistry, K.A. Piez and A.H. Reddi, eds., pp. 191–227. Elsevier, New York.

    Google Scholar 

  • Grinnel, F. (1984) Fibronectin and wound healing. J. Cell Biocehm. 26: 107–116.

    Article  Google Scholar 

  • Hahn, E.G., and D. Schuppan (1985) Ethanol and fibrogenesis in the liver. In Alcohol Related Diseases in Gastroenterology, H.K. Seitz and B. Kommerell, eds., pp. 124–153. Springer, Berlin.

    Chapter  Google Scholar 

  • Hakamori, S., M. Fukuda, K. Sekiguchi, and W.G. Carter (1984) Fibronectin, laminin, and other extracellular glycoproteins. In Extracellular Matrix Biochemistry, K.A. Piez and A.H. Reddi, eds., pp. 229–272. Elsevier, New York.

    Google Scholar 

  • Hand, P.H., A. Thor, J. Schlom, C.N. Rao, and L. Liotta (1985) Expression of laminin receptor in normal and carcinomatous human tissues as defined by a monoclonal antibody. Cancer Res. 45: 2713–2717.

    PubMed  CAS  Google Scholar 

  • Hascall, V.C., and J. Kimara (1982) Proteoglycans: Isolation and characterization. Methods Enzymol. 82: 769–800.

    Article  CAS  Google Scholar 

  • Hassel, J.R., P. Gehron-Robey, H. Barrach, H.J. Wilczek, S. Rennard, and G.R. Martin (1980) Isolation of a heparan sulfate containing proteogylcan from basement membrane. Proc. Natl. Acad. Sci. (USA) 77: 4494–4498.

    Article  Google Scholar 

  • Hayman, E.G., M.D. Pierschbacher, J. Ohgren, and E. Ruoslahti (1983) Serum spreading factor (vitronectin) is present at the cell surface and in tissues. Proc. Natl. Acad. Sci. (USA) 80: 4003–4007.

    Article  CAS  Google Scholar 

  • Heinegard, D., and M. Paulsson (1984) Structure and metabolism of proteoglycans. In Extracellular Matrix Biochemistry, K.A. Piez and A.H. Reddi, eds., pp. 277–328. Elsevier, New York.

    Google Scholar 

  • Heller-Harrison, R., and W.G. Carter (1984) Pepsin-generated type VI collagen is a degradation product of GP 140. J. Biol. Chem. 259: 6558–6564.

    Google Scholar 

  • Henkel, W., and R.W. Glanville (1982) Covalent crosslinking between molecules of type I and type 111 collagen: The involvement of the N-terminal, nonhelical regions of the al(I) and al(III) chains in the formation of intermolecular crosslinks. Eur. J. Biochem. 122: 205–213.

    Article  PubMed  CAS  Google Scholar 

  • Hessle, H., and E. Engvall (1984) Type VI collagen. Studies on its localization, structure and biosynthetic form with monoclonal antibodies. J. Biol. Chem. 259: 3955–3961.

    PubMed  CAS  Google Scholar 

  • Hofmann, H., P.P. Fietzek, and K. Kiihn (1980) Comparative analysis of the sequences of the three collagen chains αl(I), α2 and αl(I II). J. Mol. Biol. 141: 293–314.

    Article  PubMed  CAS  Google Scholar 

  • Irwin, M.H., H. Sandra, and R. Mayne (1985) Monoclonal antibody against chicken type IX collagen: Preparation, characterization, and recognition of the intact form of type IX collagen secreted by chondrocytes. J. Cell Biol. 101: 814–823.

    Article  PubMed  CAS  Google Scholar 

  • Kivirikko, K.I., and R. Myllyla (1982) Posttranslational enzymes in the biosynthesis of collagen: Intracellular enzymes. Methods Enzymol. 82: 245–304.

    Article  PubMed  CAS  Google Scholar 

  • Kivirikko, K.I., and R. Myllyla (1984) Biosynthesis of the collagens. In Extracellular Matrix Biochemistry, K.A. Piez and A.H. Reddi, eds., pp. 83–118. Elsevier, New York.

    Google Scholar 

  • Kleinman, H., F.B. Cannon, G.W. Laurie, J.R. Hassel, M. Anmailley, V.P. Terranova, G.R. Martin, and M. DuBois-Dalcq (1985) Biological activities of laminin. J. Cell Biochem. 27: 317–325.

    Article  PubMed  CAS  Google Scholar 

  • Kleinman, H., M.L. McGarvey, J.R. HasseJ, V.L. Star, F.B. Cannon, G.W. Laurie, and G. Martin (1986) Basement membrane complexes with biological activity. Biochemistry 25: 312–318.

    Article  PubMed  CAS  Google Scholar 

  • Kuettner, K.E., and J.H. Kimura (1985) Proteoglycans: An overview. J. Cell. Biochem. 27: 327–336.

    Article  PubMed  CAS  Google Scholar 

  • Kumamoto, C.A., and J.H. Fessler (1980) Biosynthesis of A, B procollagen. Proc. Natl. Acad. Sci. (USA) 77: 6434–6438.

    Article  CAS  Google Scholar 

  • Kurita, K., Y. Hasimoto, T. Takai, T. Kaway, and T. Hayakawa (1985) Changes in collagen types during the healing of rabbit tooth extraction wounds. J. Dent. Res. 64: 28–32.

    Article  PubMed  CAS  Google Scholar 

  • Lander, A.D., D.K. Fuji, and L.F. Reichardt (1985) Purification of a factor that promotes neurite outgrowth: Isolation of laminin and associated molecules. J. Cell Biol. 101: 898–913.

    Article  PubMed  CAS  Google Scholar 

  • Ledbetter, S., B. Tyree, 3.R. Hassel, and E.A. Horigan (1985) Identification of the precursor protein to basement membrane heparan sulfate proteoglycan. 3. Biol. Chem. 260: 8106–8113.

    CAS  Google Scholar 

  • Lesot, H., U. Kiihl, and K. Von der Mark (1983) Isolation of a laminin-binding molecule from muscle cell membranes. EMBO J. 2: 861–865.

    PubMed  CAS  Google Scholar 

  • Lozano, G., Y. Ninomiya, H. Thompson, and B.R. Olsen (1985) A distinct class of vertebrate collagen genes encodes chicken type IX collagen polypeptides. Proc. Natl. Acad. Sci. (USA) 82: 4050–4054.

    Article  CAS  Google Scholar 

  • Malinoff, H.L., and M.S. Wicha (1983) Isolation of a cell surface receptor protein for laminin from murine fibrosarcoma cells. J. Cell Biol. 96: 1475–1479.

    Article  PubMed  CAS  Google Scholar 

  • Manthorpe, M., E. Engvall, E. Ruoslahti, F.M. Longo, G.E. Davis, and S. Varon (1983) Laminin promotes neuritic regeneration from cultured peripheral and central neurons. J. Cell Biol. 97: 1882–1890.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Hernandez, A., and P.S. Amenta (1983) The basement membrane in pathology. Lab. Invest. 48: 656–677.

    PubMed  CAS  Google Scholar 

  • Mays, C., and T.L. Rosenberry (1981) Characterization of pepsin-resistant collagen-like tail subunit fragments of 18S and 14S acetylcholinesterase from electrophorus electricus. Biochemistry 20: 2810–2817.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy, J.B., S.T. Hagen, and L.T. Furcht (1986) Human fibronectin contains distinct adhesion- and motility promoting domains for metastatic melanoma cells. J. Cell Biol. 102: 179–188.

    Article  PubMed  CAS  Google Scholar 

  • Miller, E.J., and S. Gay (1982) Collagens - an overview. Methods Enzymol. 82: 3–32.

    Article  PubMed  CAS  Google Scholar 

  • Miller, E.J., and R.K. Rhodes (1982) Preparation and characterization of the different types of collagen. Methods Enzymol. 82: 33–64.

    Article  PubMed  CAS  Google Scholar 

  • Modesti, A., T. Kalebic, S. Scarpa, S. Togo, G. Grotendorst, L. Liotta, and T. Triche (1985) Type V collagen in human amnion is a 12 nm fibrillar component of the pericellular interstitium. Eur. J. Cell Biol. 35: 246–255.

    Google Scholar 

  • Mollenhauser, J., and K. Von der Mark (1983) Isolation and characterization of a collagen-binding glycoprotein from chondrocyte membranes. EMBO J. 2: 45–50.

    Google Scholar 

  • Morris, N.P., D.R. Keene, R.W. Glanville, H. Bentz, and R.E. Burgeson (1986) The tissue form of type VII collagen is an antiparallel dimer. J. Biol. Chem. 261: 5638–5644.

    PubMed  CAS  Google Scholar 

  • Morton, L.F., and M.J. Barnes (1982) Collagen polymorphism in the normal and diseased blood vessel wall: Investigation of collagen types I, III and V. Atherosclerosis 42: 41–51.

    Article  PubMed  CAS  Google Scholar 

  • Myers, J.C., H.R. Loidl, C.A. Stolle, and J.M. Seyer (1985) Partial covalent structure of the human a2(V) collagen chain. J. Biol. Chem. 260: 5533–5541.

    PubMed  CAS  Google Scholar 

  • Niemela, O., L. Risteli, E.A. Sotaniemi, and J. Risteli (1985) Type IV collagen and lami- nin-related antigens in human serum in alcoholic liver disease. Eur. J. Clin. Invest. 15: 132–137.

    Article  PubMed  CAS  Google Scholar 

  • Ninomiya, Y., and B.R. Olsen (1984) Synthesis and characterization of cDNA encoding a cartilage-specific short collagen. Proc. Natl. Acad. Sci. (USA) 81: 3014–3018.

    Article  CAS  Google Scholar 

  • Oberbaumer, I., H. Wiedemann, R. Timpl, and K. Kiihn (1982) Shape and assembly of type IV procollagen obtained from cell culture. EMBO J. 1: 805–810.

    PubMed  CAS  Google Scholar 

  • Odermatt, E., J. Risteli, V. Van Delden, and R. Timpl (1983) Structural diversity and domain composition of a unique collagenous fragment (intima collagen) obtained from human placenta. Biochem. J. 211: 295–302.

    PubMed  CAS  Google Scholar 

  • Ooshima, A. (1981) Collagen B chain: Increased proportion in human atherosclerosis. Science 213: 666–668.

    Article  PubMed  CAS  Google Scholar 

  • Paulsson, M., and D. Heinegard (1984) Noncollagenous cartilage proteins. Current status of an emerging research field. Collagen Rel. Res. 4: 219–229.

    CAS  Google Scholar 

  • Petersen, T.H., H.C. Thogersen, K. Skorstengaard, K. Vibe-Pedersen, P. Sahl, L. Sottrup- Jensen, and S. Magnasson (1983) Partial primary structure of bovine plasma fibro- nectin: Three types of internal homology. Proc. Natl. Acad. Sci. (USA) 80: 137–141.

    Article  CAS  Google Scholar 

  • Pierschbacher, M.D., and E. Ruoslahti (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309: 30–33.

    Article  PubMed  CAS  Google Scholar 

  • Pihlajaniemi, T.K., K. Tryggvason, J.C. Myers, M. Kurkinen, R. Lebo, M.C. Cheung, D.J. Prockop, and C.D. Boyd (1985) cDNA clones coding for the pro-αl(IV) chain of human type IV procollagen reveal an unusual homology of amino acid sequences in two halves of the carboxy-terminal domain. J. Biol. Chem. 260: 7681–7687.

    PubMed  CAS  Google Scholar 

  • Piez, K.A. (1984) Molecular and aggregate structures of the collagens. In Extracellular Matrix Biochemistry, K.A. Piez and A.H. Reddi, eds., pp. 1–39. Elsevier, New York.

    Google Scholar 

  • Poole, A.R. (1986) Proteoglycans in health and disease: Structures and functions. Biochem. J. 236: 1–14.

    PubMed  CAS  Google Scholar 

  • Prockop, D.3., K.I. Kivirikko, L. Tuderman, and A. Guzman (1979) The biosynthesis of collagen and its disorders. N. Engl. J. Med. 301: 77–85.

    Article  Google Scholar 

  • Prosser, I.W., M.A. Gibson, and E.G. Cleary (1984) Microfibrillar protein from elastic tissue: A critical evaluation. Aust. J. Exp. Biol. Med. Sci. 62: 485–505.

    Article  PubMed  CAS  Google Scholar 

  • Pytela, R., M.D. Pierschbacher, and E. Ruoslahti (1985) Identification and isolation of a 140 kD cell surface glycoprotein with properties of a fibronection receptor. Cell 40: 191–198.

    Article  PubMed  CAS  Google Scholar 

  • Ratner, N., R.P. Bunge, and L. Glaser (1985) A neuronal cell surface haparan sulfate proteogylcan is required for dorsal root ganglion neuron stimulation of Schwann cell proliferation. J. Cell. Biol. 101: 744–754.

    Article  PubMed  CAS  Google Scholar 

  • Reddi, A.H. (1984) Extracellular matrix and development. In Extracellular Matrix Biochemistry, K.A. Piez and A.H. Reddi, eds., pp. 375–412. Elsevier, New York.

    Google Scholar 

  • Reese, C.A., and R. Mayne (1981) Minor collagens of chick hyaline cartilage. Biochemistry 20: 5443–5448.

    Article  PubMed  CAS  Google Scholar 

  • Reid, K.B.M., and R.R. Porter (1981) The proteolytic activation systems of complement. Ann. Rev. Biochem. 50: 433–464.

    Article  PubMed  CAS  Google Scholar 

  • Rhodes, R.K., and E.J. Miller (1982) Evidence for the existence of an HV)α2(V)α3(V) collagen molecule in human placental tissue. Coll. Rel. Res. 1: 337–343.

    Google Scholar 

  • Risteli, J., H.P. Bachinger, J. Engel, H. Furthmayr, and R. Timpl (1980) 7-S collagen: Characterization of an unusual basement membrane structure. Eur. J. Biochem. 108: 239–250.

    Article  PubMed  CAS  Google Scholar 

  • Risteli, J., K.E. Draeger, G. Regitz, and H.P. Neubauer (1982) Increase in circulating basement-membrane antigens in diabetic rats and effects of insulin treatment. Diabetologia 23: 266–269.

    Article  PubMed  CAS  Google Scholar 

  • Rohde, H., L. Vargas, E.G. Hahn, H. Kalbfleisch, M. Bruguera, and R. Timpl (1979) Radioimmunoassay for type 111 procollagen peptide and its application to human liver disease. Eur. J. Clin. Invest. 9: 451–459.

    Article  PubMed  CAS  Google Scholar 

  • Rosenbloom, J. (1982) Elastin: Biosynthesis, structure, degradation and role in disease processes. Connect. Tissue Res. 10: 73–91.

    Article  PubMed  CAS  Google Scholar 

  • Ruoslahti, E., E. Engvall, and E.G. Hayman (1981) Fibronectin: Current concepts on its structure and function. Collagen Rel. Res. 1: 95–128.

    CAS  Google Scholar 

  • Ruoslahti, E., E.G. Hayman, M. Pierschbacher, and E. Engvall (1982) Fibronectin: Puri-fication, biochemical properties, and biological activities. Methods Enzymol. 82: 803–831.

    Article  PubMed  CAS  Google Scholar 

  • Sage, H. (1985) Low molecular weight fibroblast collagen: Structure, secretion, and dif-ferential expression as a function of fetal and cellular age. Biochemistry 24: 7430–7440.

    Article  PubMed  CAS  Google Scholar 

  • Sage, H., G. Balian, A.M. Vogel, and P. Bornstein (1984) Type VIII collagen: Synthesis by normal and malignant cells in culture. Lab. Invest. 50: 219–231.

    PubMed  CAS  Google Scholar 

  • Sage, H., and P. Bornstein (1982) Preparation and characterization of procollagens and procollagen-collagen intermediates. Methods Enzymol. 82: 96–127.

    Article  PubMed  CAS  Google Scholar 

  • Sage, H., and W.R. Gray (1979) Studies on the evolution of elastin. I. Phylogenetic dis-tribution. Comp. Biochem. Physiol. 64B: 313–317.

    CAS  Google Scholar 

  • Sage, H., P. Pritzl, and P. Bornstein (1980) A unique, pepsin-sensitive collagen synthe-sized by aortic endothelial cells in culture. Biochemistry 19: 5747–5755.

    Article  PubMed  CAS  Google Scholar 

  • Schmid, T.M., and T.F. Linsenmayer (1982) Metabolism of low molecular weight collagen by chondrocytes obtained from histologically distinct zones of the chick embryo tibiotarus. J. Biol. Chem. 257: 12451–12457.

    PubMed  CAS  Google Scholar 

  • Schmid, T.M., R. Mayne, J.J. Jeffrey, and T.F. Linsenmayer (1986) Type X collagen contains two cleavage sites for a vertebrate coilagenase. J. Biol. Chem. 261: 4184–4189.

    PubMed  CAS  Google Scholar 

  • Schuppan, D., J. Becker, H. Boehm, and E.G. Hahn (1986a) Immunofluorescent localiza-tion of type V collagen as a fibrillar component of the interstitial connective tissue of human oral mucosa, artery and liver. Cell Tissue Res. 243: 535–543.

    Article  PubMed  CAS  Google Scholar 

  • Schuppan, D., M. Besser, R. Schwarting, and E.G. Hahn (1986b) Radioimmunoassay for the carboxyterminal cross-linking domain of type IV (basement membrane) pro-collagen in body fluids. J. Clin. Invest., in press.

    Google Scholar 

  • Schuppan, D., C. Cantaluppi, E.G. Hahn, F. Schuppan, J. Becker, R. Fleischmajer, H. Wiedemann, and K. Kuhn (1986c) Undulin, a type I collagen-associated glyco-protein from the connective tissue, submitted.

    Google Scholar 

  • Schuppan, D., T. Riihlmann, and E.G. Hahn (1985) Radioimmunoassay for human type VI collagen and its application to tissue and body fluids. Analyt. Biochem. 149: 238–247.

    Article  PubMed  CAS  Google Scholar 

  • Schuppan, D., R. Timpl, and R.W. Glanville (1980) Discontinuities in the triple helical sequence Gly-X-Y of basement membrane (type IV) collagen. FEBS Let. 115: 297–300.

    Article  CAS  Google Scholar 

  • Silbert, J.E. (1982) Structure and metabolism of proteoglycans and glycosaminoglycans. J. Invest. Dermatol. 79: 31s–37s.

    Article  PubMed  Google Scholar 

  • Slavkin, H.C., and R.C. Greulich, eds. (1975) In Extracellular Matrix influences on gene expression. Academic, New York.

    Google Scholar 

  • Smith, D.W., N. Weissman, W.H. Carnes (1968) Cardiovascular studies on copper-deficient swine. XII. Partial purification of a soluble protein resembling elastin. Bio- chem. Biophys. Res. Commun. 31: 309–315.

    Article  CAS  Google Scholar 

  • Stow, J.L., H. Sawada, and M.G. Farquhar (1985) Basement membrane heparan sulfate proteoglycans are concentrated in the laminae rarae and in podocytes of the ra renal glomerulus. Proc. Natl. Acad. Sci. (USA) 82: 3296–3300.

    Article  CAS  Google Scholar 

  • Suzuki, S., A. Oldberg, E.G. Hayman, M.D. Pierschbacher, and E. Ruoslahti (1985) Complete amino acid sequence of human vitronectin deduced from cDNA. Similarity of cell attachment sites in vitronectin and fibronectin. EMBO J. 4: 2519–2524.

    PubMed  CAS  Google Scholar 

  • Thompson, L.K., P.M. Horowitz, K.L. Bentley, D.D. Thomas, J.F. Alderete, and R.J. Klebe (1986) Localization of the ganglioside-binding site of fibronectin. J. Biol. Chem. 261: 5209–5214.

    PubMed  CAS  Google Scholar 

  • Timpl, R. (1976) Immunological studies on collagen. In Biochemistry of Collagen, G.N. Ramachandran and A.H. Reddi, eds., pp. 319–375. Plenum, New York.

    Google Scholar 

  • Timpl, R. (1984a) Immunology of the collagens. In Extracellular Matrix Biochemistry, K.A. Piez and A.H. Reddi, eds. pp. 159–190. Elsevier, New York.

    Google Scholar 

  • Timpl, R. (1984b) Processed and unprocessed forms of procollagens. Biochem. Soc. Transactions 12: 924–927.

    CAS  Google Scholar 

  • Timpl, R., M. Dziadek, S. Fujiwara, H. Nowack, and G. Wick (1983) Nidogen: A new, self-aggregating basement membrane protein. Eur. J. Biochem. 137: 455–465.

    Article  PubMed  CAS  Google Scholar 

  • Timpl, R., S. Fujiwara, M. Dziadek, M. Aumailley, S. Weber, and J. Engel (1984) Laminin, proteoglycan, nidogen and collagen IV: Structural models and molecular interactions. In Basement Membranes and Cell Movement, CIBA Fdn. Symp. 108, pp. 25–43. Pitman, London.

    Google Scholar 

  • Timpl, R., and G.R. Martin (1982) Components of basement membranes. In Immuno- chemistry of the Extracellular Matrix, vol. II, H. Furthmayr, ed., pp. 119–150. CRC Press, Boca Raton.

    Google Scholar 

  • Timpl, R., H. Rohde, P. Gehron-Robey, S.I. Rennard, J.M. Foidart, and G.R. Martin (1979) Laminin - a glycoprotein from basement membranes. J. Biol. Chem. 254: 9933–9937.

    PubMed  CAS  Google Scholar 

  • Timpl, R., H. Rohde, L. Risteli, U. Ott, P. Gehron Robey, and G.R. Martin (1982) Laminin. Methods Enzymol. 82: 831–839.

    Article  PubMed  CAS  Google Scholar 

  • Timpl, R., H. Wiedemann, V. van Delden, H. Furthmayer, and K. Kiihn (1981) A network model for the organization of type IV collagen molecules in basement membranes. Eur. J. Biochem. 120: 203–211.

    Article  PubMed  CAS  Google Scholar 

  • Trueb, B., B. Grobli, M. Spiess, B. Odermatt, and K.H. Winterhalter (1984) Basement membrane (type IV) collagen is a heteropolymer. J. Biol. Chem. 257: 5239–5245.

    Google Scholar 

  • Van der Rest, M., R. Mayne, Y. Ninomiya, N.G. Seidah, M. Chretien, and B.R. Olsen (1985) The structure of type IX collagen. J. Biol. Chem. 260: 220–225.

    PubMed  Google Scholar 

  • Vaughan, L., K.H. Winterhalter, and P. Bruckner (1985) Proteoglycan Lt from chicken embryo sternum identified as type IX collagen. J. Biol. Chem. 260: 4758–4763.

    PubMed  CAS  Google Scholar 

  • Veis, A. (1984) Bone and teeth. In Extracellular Matrix Biochemistry, K.A. Piez and A.H. Reddi, eds., pp. 329–374. Elsevier, New York.

    Google Scholar 

  • Von der Mark, H., M. Aumailley, G. Wick, R. Fleischmajer, and R. Timpl (1984) Immuno- chemistry, genuine size and tissue localization of collagen VI. Eur. J. Biochem. 142: 493–502.

    Article  PubMed  Google Scholar 

  • Vracko, R. (1982) Role of basal lamina in the maintenance of orderly tissue structure. In New Trends in Basement Membrane Research, K. Kuehn, H.H. Schoene, and R. Timpl, eds., pp. 1–8. Raven, New York.

    Google Scholar 

  • Williamson, J.R., and C. Kilo (1977) Current status of capillary basement membrane disease in diabetes mellitus. Diabetes 26: 65–73.

    PubMed  CAS  Google Scholar 

  • Yamada, K.M., S.K. Akiyama, T. Hasegawa, E. Hasegawa, M.3. Humphries, D.W. Kennedy, K. Nagata, H. Urushihara, K. Olden, and W.T. Chen (1985) Recent advances in research on fibronectin and other cell attachment proteins. J. Cell. Biochem. 28: 79–97.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, K.M., J.A. Weston (1974) Isolation of a major cell-surface glycoprotein from fibroblasts. Proc. Natl. Acad. Sci. (USA) 71: 3492–3496.

    Article  CAS  Google Scholar 

  • Yurchenco, P.D., E.C. Tsilibary, A.S. Charonis, and H. Furthmayr (1986) Models for the self-assembly of basement membrane. J. Histochem. Cytochem. 34: 93–102.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Hedelberg

About this paper

Cite this paper

Schuppan, D., Hahn, E.G. (1987). Components of the Extracellular Matrix (Collagens, Elastin, Glyco-Proteins and Proteoglycans). In: Wolff, J.R., Sievers, J., Berry, M. (eds) Mesenchymal-Epithelial Interactions in Neural Development. NATO ASI Series, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71837-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71837-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71839-7

  • Online ISBN: 978-3-642-71837-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics