Skip to main content

Neurobiologische Aspekte psychischer Störungen bei degenerativen Hirnerkrankungen im Alter

  • Chapter
Book cover Alterspsychiatrie

Part of the book series: Psychiatrie der Gegenwart ((GEGENWART))

  • 29 Accesses

Zusammenfassung

Angesichts der Häufung degenerativer Hirnerkrankungen, die im höheren und mittleren Lebensalter zu einer Demenz führen können, stellt sich die Frage, inwieweit diese Krankheiten durch das allgemeine Nachlassen von Gesundheit und Vitalität und die Zunahme vielfältiger Krankheiten verursacht sind, die mit dem Prozeß des Alterns verbunden sind. Die zahlreichen Mangelerscheinungen und Krankheiten der zweiten Lebenshälfte werden oft so betrachtet, als entstünden sie aus einer Multiplizität von Ursachen, und ihre Erforschung wird in einer Weise betrieben, als handle es sich um völlig voneinander unabhängige Zustände. Möglicherweise wurzeln sie aber in einem einheitlichen Prozeß: Die Tatsache, daß das Leben im höheren Alter durch Unfälle, Infektionen und andere Krankheiten beendet wird, die in jüngeren Lebensabschnitten ohne weiteres überstanden werden, deutet auf das Vorliegen eines solchen einheitlichen Prozesses hin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adolfsson R, Gottfries CG, Roos BE, Winblad B (1979) Changes in brain catecholamines in patients with dementia of Alzheimer’s type. B J Psychiatry 135:216–223

    CAS  Google Scholar 

  • Allen SJ, Benton JS, Goodhardt MJ, Haan EA, Sims NR, Smith CCT, Spillane JA, Bowen DM, Davison AN (1983) Biochemical evidence of selective nerve cell changes in the normal ageing human and rat brain. J Neurochem 41:256–265

    CAS  PubMed  Google Scholar 

  • Arai H, Emson PC, Mountjoy CQ, Carrasco LH, Heizmann CW (1987) Loss of parvalbumin-immunoreactive neurones from cortex in Alzheimer-type dementia. Brain Res 418:164–169

    CAS  PubMed  Google Scholar 

  • Ball MJ (1977) Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with ageing and dementia: A qualitative study. Acta-neuropathola 37(2): 111–118

    CAS  Google Scholar 

  • Bartus RT, Dean RL, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414

    CAS  PubMed  Google Scholar 

  • Bartus R, Dean R, Flicker C (1987) Cholinergic Psychopharmacology. An integration of human and Animal Research on Memory. In Meltzer HJ (ed) Psychopharmacology. The Third Generation of Progress. Raven Press, New York, pp 219–232

    Google Scholar 

  • Bennett JP, Enna SJ, Bylund DB, Gillin JC, Wyatt RJ, Snyder SH (1979) Arch Gen Psychiatry 36:927–934

    CAS  PubMed  Google Scholar 

  • Benton JS, Bowen DM, Allen SJ, Haan EA, Davison AN, Neary D, Murphy RP, Snowden JS (1982) Alzheimer’s disease as a disorder of the isodendritic core. Lancet 1:456

    CAS  PubMed  Google Scholar 

  • Berteler A, Falck B, Owman C, Rosengrenn E (1966) The localization of monoaminergic blood-brain barrier mechanisms. Pharmacol Rev 18:369–385

    Google Scholar 

  • Blessed G, Tomlinson BE, Roth M (1968) The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br J Psychiatry 114:797–811

    CAS  PubMed  Google Scholar 

  • Bondareff W (1983) Age and Alzheimer’s disease. Lancet 1:1447

    CAS  PubMed  Google Scholar 

  • Bondareff W, Mountjoy CQ, Roth M (1981) Selective loss of neurones of origin adrenergic projection to cerebral cortex (nucleus locus coeruleus) in senile dementia. Lancet 1:783–784

    CAS  PubMed  Google Scholar 

  • Bondareff W, Mountjoy CQ, Roth M (1982) Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus coeruleus) in senile dementia. Neurol 32:164–168

    CAS  Google Scholar 

  • Bondareff W, Mountjoy CQ, Roth M, Rossor MN, Iversen LL, Reynolds GP (1987 a) Age and histopathological heterogeneity in Alzheimer’s disease: evidence for subtypes. Arch Gen Psychiatry 44:412–417

    CAS  PubMed  Google Scholar 

  • Bondareff W, Mountjoy CQ, Roth M, Rossor MN, Iversen LL, Reynold GP, Hauser DL (1987 b) Neuronal degeneration in locus ceruleus and cortical correlates of Alzheimer disease. Alzheimer Disease and Associated Disorders. 1:256–262

    CAS  PubMed  Google Scholar 

  • Bondareff W, Mountjoy CQ, Roth M, Hauser DL (1988) Neurofibrillary degeneration and neuronal loss in Alzheimer’s disease. Arch Gen Psychiatry (in press)

    Google Scholar 

  • Bowen DM, Smith CB, White P, Davison AN (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99:459–495

    CAS  PubMed  Google Scholar 

  • Bowen DM, White P, Spillane JA, Goodhardt M J, Curzon G, Iwangoff P, Meier-Ruge W, Davison AN (1979) Accelerated ageing or selective neuronal loss as an important cause of dementia. Lancet 1:11–14

    CAS  PubMed  Google Scholar 

  • Bowen DM, Allen SJ, Benton JS, Goodhardt MJ, Haan EA, Palmer AM, Sims NR, Smith CCT, Spillane JA, Esiri MM, Neary D, Snowden JS,Wilcock GK, Davison AN (1983) Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease. J Biochem 41:266–272

    CAS  Google Scholar 

  • Bowen DM, Davison AN, Francis PT, Neary D, Palmer AM (1984) Alzheimer’s disease: importance of acetylcholine and tangle-bearing cortical neurones. In: Wurtman RJ, Corkin SH, Growdon JH (eds) Alzheimer’s disease: advances in basic research and therapies, pp 9–27

    Google Scholar 

  • Brody H (1955) Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex. J Comp Neurol 102:511–556

    CAS  PubMed  Google Scholar 

  • Brody H (1976) An examination of cerebral cortex and brain stem aging. In: Terry TD, Gershon S (eds) Aging, vol 3: Neurobiology of Aging. Raven Press, New York, pp 177–183

    Google Scholar 

  • Brown RG, Marsden CD (1984) How common is dementia in Parkinson’s disease? Lancet 2:1262–1265

    CAS  PubMed  Google Scholar 

  • Brun A, Englund E (1981) Regional pattern of degeneration in Alzheimer’s disease: neuronal loss and histopathological grading. Histopathology 5:549–564

    CAS  PubMed  Google Scholar 

  • Bucht G, Adolfsson R, Gottfries CGT, Roos BE, Winblad B (1981) Distribution of 5-hydroxy-tryptamine and 50 hydroxyindoleacetu acid in human brain in relation to age, drug influence, agonal status and circadian variation. J Neural Transm 51:185–203

    CAS  PubMed  Google Scholar 

  • Buck SH, Deshmukkh PP, Burks TF, Yamamura HI (1981) A survey of substance P, somatostatin and neurotensin levels in aging in the rat and human central nervous system. Neurobiol Aging 2, pp 257–264

    CAS  PubMed  Google Scholar 

  • Buell SJ, Coleman PD (1979) Dendritic growth in the aged brain and failure of growth in senile dementia. Science 206:854–856

    CAS  PubMed  Google Scholar 

  • Candy J, Perry RH, Perry EK, Irving D, Blessed G, Fairbairn AF, Tomlinson BE (1983) Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases. J Neurol Sci 59:277–289

    CAS  PubMed  Google Scholar 

  • Carlson A (1986) General Conclusions, in: Bergener M, Ermini M, Stahelin HB (eds) Dimensions in aging. The 1986 sandox lectures in gerontology. Academic Press, London, pp301–304

    Google Scholar 

  • Carlsson A, Winblad B (1976) Influence of age and time interval between death and autopsy on dopamine and 3-methoxytryptamine levels in human basal ganglia. J Neural Transm 38(3–4):271–276

    CAS  PubMed  Google Scholar 

  • Carlsson A, Adolfsson R, Aquilonius SM, Gottfires CG, Oreland L, Svennerholm L, Winblad B (1980) In: Goldstein et al. (eds) Ergot Compounds and brain functions. Neuroendocrine and neuropsychiatric aspects. Raven Press, New York, pp 295–305

    Google Scholar 

  • Coleman PD, Flood DG (1987) Neuron numbers and dendritic extent in normal ageing and Alzheimer’s disease. Neurobiol Ageing 8(6):521–545

    CAS  Google Scholar 

  • Corsellis JAN (1962) Mental Illness and the Ageing Brain. Oxford University Press, London

    Google Scholar 

  • Corsellis JAN, Bruton CJ, Freeman-Browne D (1973) The aftermath of boxing. Psychol Med 3:270–303

    CAS  PubMed  Google Scholar 

  • Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219:1184–1190

    CAS  PubMed  Google Scholar 

  • Cross AJ, Crow TJ, Perry EK, Perry RH, Blessed G, Tomlinson BE (1981) Reduced dopamine beta hydroxalase activity in Alzheimer’s disease. Br Med J 282:93–94

    CAS  Google Scholar 

  • Crowther RA, Wischik CM, Stewart M (1985) Analysis of the structure of paired helical filaments. Proc EMSA 43:734–737

    Google Scholar 

  • Curcio CA, Kemper T (1984) Nucleus raphe dorsalis in dementia of the Alzheimer type: Neurofibrillary changes and neuronal packing density. J Neuropathol of Exp Neurol 43:359–368

    CAS  Google Scholar 

  • Davies P (1979) Neurotranmitter-related enzymes in senile dementia of the Alzheimer type. Brain Res 171:319–327

    CAS  PubMed  Google Scholar 

  • Davies P, Maloney AJF (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2:1403

    CAS  PubMed  Google Scholar 

  • Davis P, Verth A (1976) Regional distribution of muscarinic acetylcholine receptor in normal and Alzheimer type brains. Brain Res 138:385–392

    Google Scholar 

  • Davies P, Katzman R, Terry RD (1980) Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer disease and Alzheimer senile dementia. Nature 288:279–280

    CAS  PubMed  Google Scholar 

  • Davis PJM, Wright EA (1977) A new method for measuring cranial cavity volume and its application to the assessment of cerebral atrophy at autopsy. Neuropathol Appl Neurobiol 3:341–358

    Google Scholar 

  • Dawbarn D, Rossor MN, Mountjoy CQ, Roth M, Emson PC (1986) Decreased somatostatin immunoreactivity but not neuropeptide Y immunoreactivity in cortex in senile dementia of Alzheimer type. Neurosci Lett 70:154–159

    CAS  PubMed  Google Scholar 

  • Diamond MC, Krech D, Rosenzweig MR (1964) The effects of an enriched environment on the histology of the rat cerebral cortex. J Comp Neurol 123:409–418

    Google Scholar 

  • Diamond MD (1967) Extensive cortical depth measurements and neuron size increases in the cortex of environmentally enriched rats. J Comp Neurol 131:357–364

    Google Scholar 

  • Drachman DA, Sahakian BJ (1980) Memory and cognitive function in the elderly; a preliminary trial of physostigmine. Arch Neurol 37:657–675

    Google Scholar 

  • Eccles JC (1981) The modular operation of the cerebral neocortex considered as the material basis of mental events. Neuroscience 6(10): 1839–1856

    CAS  PubMed  Google Scholar 

  • Emson PC, Lindvall O (1979) Distribution of putative neurotransmitters in the neocortex. Neuroscience 4:1–30

    CAS  PubMed  Google Scholar 

  • Epstein CJ, Martin GM, Schultz AL, Motulsky A (1966) Werner’s syndrome a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine (Balt.) 45:177–221

    CAS  Google Scholar 

  • Ferrier IN, Cross AJ, Johnson JA, Crow TJ, Corsellis JAN, Lee YC, O’Shaughnessy D, Adrian TE, McGregor GP, Baracese-Hamilton AS J, Bloom SR (1983) Neuropeptides in Alzheimer type dementia. J Neurol Sci 62:159–170

    CAS  PubMed  Google Scholar 

  • Forno LS (1978) The locus ceruleus in Alzheimer’s disease. J Neuropathol Exp Neurol 37:614

    Google Scholar 

  • Gellersted N (1932–1933) Our knowledge of cerebral changes in normal evolution of old age. Up-sala Lak(Foren Forh 38:193

    Google Scholar 

  • Glenner GG (1988) Amyloidosis in the genesis of Alzheimer’s disease. In: Pouplard-Barthelaix A, Emile J, Christen Y (eds) Immunology and Alzheimer’s disease. Springer, Berlin Heidelberg New York Tokyo, pp 68–87

    Google Scholar 

  • Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    CAS  PubMed  Google Scholar 

  • Goedert M (1987) Neuronal localization of amyloid beta protein precursor mRNA in normal human brain and in Alzheimer’s disease. EMBO J 6(12):3627–3632

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A (1988) Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: Identification as the microtubule-associated protein tau. Proc Natl Acad Sei USA 85:4051–4055

    CAS  Google Scholar 

  • Goldgaber D, Lerman MI, McBride OW, Saffiotti U, Gajdusek DC (1987) Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer’s disease. Science 235:877–880

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1984) Modular organisation of prefrontal cortex. Trends Neurosci 7:419–429

    Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Quinlan M, Tung Y-C, Zaidi MS, Wiesniewksi HM (1986) Microtubule-associated protein tau: a component of Alzheimer paired helical filaments. J Biol Chem 261:6084–6089

    CAS  PubMed  Google Scholar 

  • Henderson G, Tomlinson BE, Gibson PH (1980) Cell counts in human cerebral cortex in normal adults throughout life using an image analysing computer. J Neurol Sci 46:113–136

    CAS  PubMed  Google Scholar 

  • Holliday R (1984) The aging process is a key problem in biomedical research. Lancet ii:1386–1387

    Google Scholar 

  • Hornykiewicz O (1982) Imbalance of brain monoamines and clinical disorders. Prog Brain Res 55:419–429

    CAS  PubMed  Google Scholar 

  • Hubbard BM, Anderson JM (1981 a) Age, senile dementia and ventricular enlargement. J Neurol Neurosurg Psychiatry 44:631–635

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hubbard BM, Anderson JM (1981 b) A quantitative study of cerebral atrophy in old age and senile dementia. J Neurol Sciences 50:135–145

    CAS  Google Scholar 

  • Huppert F (1988) Age related changes in memory: learning and remembering new information. In: Boiler F, Grafman J (eds) Handbook of Neuropsychology. Elsevier, Amsterdam (in press)

    Google Scholar 

  • Ishii T (1966) Distribution of Alzheimer’s neurofibrillary changes in the brainstem and hypothalamus of senile dementia. Acta Neuropathol 6:181–187

    CAS  PubMed  Google Scholar 

  • Iversen LL, Rossor MN, Reynolds GP, Hills R, Roth M, Mountjoy CQ, Foote SL, Morrison JH, Bloom FE (1983) Loss of pigmented dopamine-B-nydroxylase positive cells from locus coeruleus in senile dementia of Alzheimer’s type. Neurosci Lett 39:95–100

    CAS  PubMed  Google Scholar 

  • Kang J, Lemaire HG, Unter-Beck A, Salbaum JM, Masters CI, Grzeschik KH, Multhaup G, Bayreuther K, Muller Hill B (1987) The precursor of Alzheimer’s disease — amyloid A4 protein resembles a cell surface receptor. Nature 325:733–736

    CAS  PubMed  Google Scholar 

  • Katzman R (ed) (1983) Biological aspects of Alzheimer’s disease. Banburry Report 15, Cold Spring Harbor Laboratory, 435–476

    Google Scholar 

  • Kay DWK (1977) The epidemiology and identification of brain deficit in the elderly. In: Eis-dorfer C, Freidel RO (eds) Cognitive and emotional disturbances in the elderly. Chicago Yearbook 1977:11–26

    Google Scholar 

  • Kosik KS, Joachim CL, Selkoe DJ (1986) The micro tubule-associated protein, tau, is a major antigenic component of paired helical filaments in Alzheimer’s disease. Proc Natl Acad Sci USA 83:4044–4048

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kurz A, Rüster P, Romero B, Zimmer R (1986) Cholinerge Behandlungsstrategien bei der Alz-heimerschen Krankheit. Nervenarzt 57:558–569

    CAS  PubMed  Google Scholar 

  • Lasek RJ (1981) The dynamic ordering of neuronal cytoskeletons. Neurosci Res Program Bull 19(l):7–32

    CAS  PubMed  Google Scholar 

  • Lees AJ (1985) Parkinson’s disease and dementia. Lancet 1:43–44

    CAS  PubMed  Google Scholar 

  • Mann DMA, Yates PO (1983) Serotonin nerve cells in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 46:96

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mann DMA, Yates PO, Hawkes J (1982) The noradrenergic system in Alzheimer and multi-in-farct dementias. J Neuro Neurosurg Psychiatry 45:113–119

    CAS  Google Scholar 

  • Marcusson JO, Morgan DG, Winblad B, Fince CE (1984 b) Serotonin-2 binding sites in human frontal cortex and hippocampus: selective loss of S-2A sites with age. Brain Res 311:51–56

    CAS  PubMed  Google Scholar 

  • Masters CL, Gajdusek DC, Gibbs CJ Jr (1981 b) Creutzfeldt-Jakob disease virus isolation from the Gerstmann-Straussler syndrome. With an analysis of the various forms of amyloid plaque deposition in the virus-induced spongiform encephalopathies. Brain 104:559–587

    CAS  PubMed  Google Scholar 

  • Masters CL, Julthaup G, Simms G, Pottgiesser J, Martins RN, Beyreuther K (1985 a) Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J 4:2757–2763

    CAS  PubMed Central  PubMed  Google Scholar 

  • Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985 b) Amyloid plaque protein in Alzheimer’s disease and Down’s syndrome. Proc Natl Acad Sci USA 82:4245–4249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Masters CL, Martins R, Simms G, Rumble B, Fuller S, Hutchinson L, Beer J, Hilbich C, Dyrks T, Fischer P, Weidemann A, Monning U, Multhaup G, Cramer M, Salbaum JM, Wehr S, Beyreuther K (1988) The Molecular Basis of Cerebral Amyloidosis in Alzheimer’s Disease and the Unconventional Virus Disease. In: Pouplard-Barthelaix, Emile J, Christen Y (eds) Immunology and Alzheimer’s disease. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • McGeer PL, McGeer EG (1976) Enzymes associated with the metabolism of catecholamines, acetylcholine and GABA in human controls and patients with Parkinson’s disease and Huntington’s chorea. 3. Neurochem, 26(l):65–76

    CAS  Google Scholar 

  • McGeer PL, McGeer EG (1978) Aging and neurotransmitter system: A review

    Google Scholar 

  • McGeer PL, McGeer EG, Suzuki JS (1977) Aging and extrapyramidal function. Arch Neurol 34(l):33–35

    CAS  PubMed  Google Scholar 

  • McGeer PL, McGeer EG, Suzuki J, Dolman CE, Nagai T (1984) Aging, Alzheimer’s disease and the cholinergic system of the basal forebrain. Neurology 34:741–745

    CAS  PubMed  Google Scholar 

  • McKay AVP, Yates CM, Wright A, Hamilton P, Davies P (1978) Regional distribution of monoamines and their metabolites in the human brain. J Neurochem 30:841–848

    Google Scholar 

  • McKinney M, Hedreen J, Coyle JT (1982) Cortical cholinergic innervation: implications for the pathophysiology and treatment of Alzheimer’s disease. Ageing 19:259

    CAS  Google Scholar 

  • Medawar PB (1952) An unsolved problem in biology. Lewis, London: reprinted 1957 in “The Uniqueness of the Individual”. Methuen, London

    Google Scholar 

  • Miller AK, Alston RL, Mountjoy CQ, Corsellis JAN (1984) Automated differential cell counting on a sector of the normal human hippocampus: the influence of age. Neuropathol Appl Neurobiol 10:123–141

    CAS  PubMed  Google Scholar 

  • Miller AKH, Alston RL, Corsellis JAN (1980) Variation with age in the volumes of grey and white matter in the cerebral hemispheres of man: measurements with an image analyser. Neuropathol Appl Neurobiol 6:119–132

    CAS  PubMed  Google Scholar 

  • Miller CCJ, Brion J-P, Clavert R, Chink TK, Eagles PAM, Downes MJ, Flament-Durand J, Haugh M, Kahn J, Probst A, Ulrich J, Anderton BH (1986) Alzheimer’s paired helical filaments share epitopes with neurofilament side arms. EMBO J 5:269–276

    CAS  PubMed Central  PubMed  Google Scholar 

  • Monagle RD, Brody H (1974) The effects of age upon the main nucleus of the inferior olive in the human. J Comp Neurol 155:61–66

    CAS  PubMed  Google Scholar 

  • Morrison JH, Rogers J, Scherr S, Renoit R, Bloom FE (1985) Somatostatin immunoreactivity in neuritic plaques of Alzheimer’s patients. Nature 314:90–95

    CAS  PubMed  Google Scholar 

  • Mountjoy CQ, Tomlinson BE, Gibson PH (1982) Amyloid and senile plaques and cerebral blood vessels: A semi-quantitative investigation of a possible relationship. J Neurol Sci 57:89–103

    CAS  PubMed  Google Scholar 

  • Mountjoy CQ, Roth M, Evans NJR, Evans HM (1983) Cortical neuronal counts in normal elderly controls and demented patients. Neurbiol Ageing 4:1–11

    CAS  Google Scholar 

  • Mountjoy CQ, Rossor MN, Iversen LL, Roth M (1984) Correlation of cortical cholinergic and GABA deficits with quantitative neuropathological findings in senile dementia. Brain 107:507–518

    PubMed  Google Scholar 

  • Mountjoy CQ, Rossor MN, Evans NJR, Reynolds GP, Evans H, Roth M, Iversen LL, Emson P (1986) Biochemical and neuropathological changes in the brain and their correlation to the severity of dementia in Alzheimer’s disease. In: Shagass C, Josiassen RC, Bridger WH, Weiss KJ, Stoff D, Simpsom GM (eds) Biological Psychiatry 1985. Proceedings of the third Congress of Biological Psychiatry. Elsevier New York, pp 1415–1417

    Google Scholar 

  • Never RL, Harris P, Kosik KS, Kurnit DM, Donlon TA (1986) Identification of cDNA clones for the human microtubule — associated protein tau and chromosomal localization of the genes for tau and microtubule — associated protein. Brain Res 387:217–280

    Google Scholar 

  • Nordberg A, Adolfsson R, Marcusson JO, Winblad B (1982) In: Giacobini E, Filogamo G, Giacobini G, Vernadakis A (eds) The aging brain “cellular and molecular mechanisms of aging in the nervous system”. Aging vol 20. Raven Press, New York

    Google Scholar 

  • Pearson RC, Powell TP (1987) Anterograde vs retrograde degeneration of the nucleus basalis med in Alzheimer’s disease. J Neural-Transon 24:139–146

    CAS  Google Scholar 

  • Pearson RCA, Sofroniew MV, Cuello AC, Powell TP, Eckenstein F, Esiri MM, Wilcock GK (1983) Persistence of cholinergic neurons in the basal nucleus in a brain with senile dementia of the Alzheimer’s type demonstrated by immunohistochemical staining for choline acetyl-transferase. Brain Research 289:375–379

    CAS  PubMed  Google Scholar 

  • Perry EK (1986) The cholinergic hypothesis — ten years on. Br Med Bul 42(i):63–69

    CAS  Google Scholar 

  • Perry EK, Perry FH, Blessed G, Tomlinson BE (1977 a) Neurotransmitter enzyme abnormalities in senile dementia — choline acetyltransferase and glutamic acid decarboxylase in necropsy brain tissue. J Neurol Sci 34:247–265

    CAS  PubMed  Google Scholar 

  • Perry EK, Perry RH, Blessed G, Tomlinson BE (1977 b) Neurotransmitter enzyme abnormalities in senile dementia — choline acetyltransferase and glutamic acid decarboxylase in necropsy brain tissue. J Neurol Sci 34:247–265

    CAS  PubMed  Google Scholar 

  • Perry EK, Perry RH, Gibson PH, Blessed G, Tomlinson BE (1977 c) Cholinergic connection between normal aging and senile dementia in human hippocampus. Neurosci Lett 6:85–89

    CAS  PubMed  Google Scholar 

  • Perry EK, Tomlinson BE, Blessed G, Bergmann K, Gibson PH, Perry RH (1978) Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J 2:1457–1459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perry EK, Blessed G, Tomlinson BE, Perry RH, Cros TJ, Cross AJ, Dockray GJ, Diamaline R, Arregui A (1981 a) Neurochemical activities in human temporal lobe related to ageing and Alzheimer-type changes. Neurobiol Aging 2:251–256

    CAS  PubMed  Google Scholar 

  • Perry EK, Tomlinson BE, Blessed G, Perry RH, Cross AJ, Crow TJ (1981 b) Neuropathological and biochemical observations on the noradrenergic system in Alzheimer’s disease. J Neurol Sci 51:279–287

    CAS  PubMed  Google Scholar 

  • Perry EK, Perry RH, Tomlinson BE (1982) Neurosci Lett 29:303–307

    CAS  PubMed  Google Scholar 

  • Perry G, Rizzuto N, Autilio-Gambetti L, Gambetti P (1985) Paired helical filaments from Alzheimer’s disease patients contain cytoskeletal components. PNAS 82:3916–3920

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perry RH, Blessed G, Perry EK, Tomlinson BE (1980) Histochemical observations on Cholinesterase activities in the brains of elderly normal and demented (Alzheimer-type) patients. Age Ageing 9:9–16

    CAS  PubMed  Google Scholar 

  • Perry RH, Candy JM, Perry EK (1983) Some observations and speculations concerning the cholinergic system and neuropeptides in Alzheimer’s disease. In: Terry RD, Katzman R (eds) Biological aspects of Alzheimer’s disease. Banbury Report 15:351–361

    Google Scholar 

  • Perry TL, Kish SJ, Buchanan J, Hansen S (1979) Gamma-aminobutyne-acid deficiency in brain of schizophrenic patients. Lancet 1:237–239

    CAS  PubMed  Google Scholar 

  • Pilleri G (1966) The Cluver-Bucy syndrome in man: a clinico-anatomical contribution to the function of the medial temporal lobe structures. Psychiatria et Neurologia 152:65–103

    CAS  PubMed  Google Scholar 

  • Podlisny MB, Lee G, Selkoe DJ (1987) Gene dosage of the Beta-amyloid precursor protein in Alzheimer’s disease. Science 238:669–671

    CAS  PubMed  Google Scholar 

  • Pouplard-Berthelieur A (1988) Immunological Markers and Neuropathological Lesions in Alzheimer’s disease. In: Pouplard-Barthelaix A, Emile J, Christen Y (eds) Immunology and Alzheimer’s Disease. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Quinn NP, Rosser MN, Marsden CD (1986) Dementia and Parkinson’s Disease — Pathological and Neurochemical Considerations. In: Roth M, Iversen LL (eds) ALzheimer’s Disease and Related Disorders. Br Med Bull Vol 42, 1:86–90

    Google Scholar 

  • Reynolds GP, Arnold L, Rossor MN, Iversen LL, Mountjoy CQ, Roth M (1984) Reduced binding of (H) Ketanserin to cortical 5-HT receptors in senile dementia of the Alzheimer type. Neurosci Lett 44:47–51

    CAS  PubMed  Google Scholar 

  • Robakis NK, Wisniewski HM, Jenkins EC, Devine-Gage EA, Houck GE, Yao XL, Ramakrishna N, Wolfe G, Silverman WP, Brown WT (1987 b) Chromosome 21q21 sublocalisation of gene encoding beta amyloid peptide in cerebral vessels and neuritic (senile) plaques of people with Alzheimer disease and Down’s syndrome. Lancet 1:384–385

    CAS  PubMed  Google Scholar 

  • Robinson DS, Sourkes TO, Nies A, Harris LS, Spector S, Bartlett DL, Kaye IS (1977) Monoamine metabolism in human brain. Arch Gen Psychiatry 34(l):89–92

    CAS  PubMed  Google Scholar 

  • Rossor MN, Mountjoy CQ (1986) Postmortem neurochemical changes in Alzheimer’s disease compared with normal aging. The Canadian Journal of Neurological Sciences 13(4) Suppl. 499–502

    CAS  PubMed  Google Scholar 

  • Rossor M, Iversen LL, Mountjoy CQ, Roth M, Hawthorn J, Ang VY, Jenkins JS (1980 a) Ar-ginine vasopressin and choline acetyltransferase in brains of patients with Alzheimer type senile dementia. Lancet 2:1367–1368

    CAS  PubMed  Google Scholar 

  • Rossor MN, Fahrenkrug J, Emson PC, Mountjoy CQ, Iversen LL, Roth M (1980 b) Reduced cortical choline acetyltransferase activity in senile dementia of Alzheimer type is not accompanied by changes in vasoactive intestinal polypeptide. Brain Res 201:249–253

    CAS  PubMed  Google Scholar 

  • Rossor MN, Emson PC, Mountjoy CQ, Roth M, Iversen LL (1980 c) Reduced amounts of im-munoreactive somatostatin in the temporal cortex in senile dementia of Alzheimer type. Neurosci Lett 20:373–377

    CAS  PubMed  Google Scholar 

  • Rossor MN, Rehfeld JF, Emson PC, Mountjoy CQ, Roth M, Iversen LL (1981 a) Normal cortical concentration of cholecystokinin with reduced acetyltransferase activity in senile dementia of Alzheimer type. Life Sci 29:405–410

    CAS  PubMed  Google Scholar 

  • Rossor MN, Iversen LL, Johnson A J, Mountjoy CQ, Roth M (1981 b) Cholinergic deficit in frontal cerebral cortex in Alzheimer’s disease is age dependent. Lancet pp 1422

    Google Scholar 

  • Rossor MN, Svendsen C, Hunt SP, Mountjoy CQ, Roth M, Iversen LL (1982 a) The substantia innominata in Alzheimer’s disease: an histochemical and biochemical study of cholinergic marker enzymes. Neurosci Lett 28:217–222

    CAS  PubMed  Google Scholar 

  • Rossor MN, Garret NJ, Johnson AL, Mountjoy CQ, Roth M, Iversen LL (1982 b) A post-mortem study of the cholinergic and GABA systems in senile dementia. Brain 105:313–330

    CAS  PubMed  Google Scholar 

  • Rossor MN, Iversen LL, Reynolds GP, Mountjoy CQ, Roth M (1984) Neurochemical characteristics of early and late onset types of Alzheimer’s disease. Br Med J 288:361–364

    Google Scholar 

  • Roth M (1971) Classification and aetiology of mental disorders in old age: some recent developments. In: Kay DWK, Walk A (eds) Recent Developments in Psychogeriatrics (Special Publication No. 6 of the British Journal of Psychiatry). Royal Medico-Psychological Association, London, pp 1–18

    Google Scholar 

  • Roth M (1985) Evidence on possible heterogeneity of Alzheimer’s disease and its bearing on aetiology and treatment. In: Butler RN, Beam A (eds) The Ageing Process: Therapeutic Implications. Raven Press, New York, pp 251–275

    Google Scholar 

  • Roth M (1987) The association of clinical and neurobiological findings and its bearing on the classification and aetiology of Alzheimer’s disease. In: Roth M, Iversen LL (eds) ALzheimer’s Disease and Related Disorders. Br Med Bull Vol 42 No. 1:42–50

    Google Scholar 

  • Roth M (1988) Growing Points in the Neurobiology of Alzheimer’s Disease. In: Govoni S, Battaini F (eds) Modification of Cell to Cell Signals During Normal and Pathological Aging. NATO ASI Series H: Cell Biology, Vol. 9:213–226

    Google Scholar 

  • Roth M, Wischik CM (1985) The heterogeneity of Alzheimer’s disease and its implications for scientific investigations of the disorder. In: Arie T (ed) Recent advances in psychogeriatrics 1. Churchill Livingstone, Edinburgh, pp 71–92

    Google Scholar 

  • Roth M, Tomlinson BE, Blessed G (1966) Correlation between scores for dementia and counts of “senile plaques” in cerebral grey matter of elderly subjects. Nature 200:109–110

    Google Scholar 

  • Roth M, Tomlinson BE, Blessed G (1967) The relationship between quantitative measures of dementia and of degenerative changes in the cerebral grey matter of elderly subjects. Proc Soc Med 60:254–259

    CAS  Google Scholar 

  • St. George Hyslop PH, Tanzi RE, Polinsky RJ, Haines JL, Nee L, Watkins PC, Myers RH, Feldman RG, Pollen DF, Drachman D, Growdon J, Bruni A, Foncin J-F, Gusella JF (1987) The genetic defect causing familial Alzheimer’s disease maps on chromosome 21. Science 235:885–890

    Google Scholar 

  • Scheibel ME, Tomiyasu U, Scheibel AB (1977) The aging human Betz cell. Exp Neurol 56:598–609

    CAS  PubMed  Google Scholar 

  • Selkoe DJ (1987) Deciphering Alzheimer’s disease: the pace quickens. Trends Neurosci 10:181–184

    Google Scholar 

  • Severson JA, Marcusson J, Winblad B, Finch CE (1982) Age-correlated loss of dopaminergic binding sites in human basal ganglia. J Neurochem 39:1623–1631

    CAS  PubMed  Google Scholar 

  • Severson JA, Marcusson JO, Osterburg HH, Finch CE, Winblad B (1985) Elevated density of (3H) imipramine binding in aged human brain. J Neurochem 45(5): 1382–1389

    CAS  PubMed  Google Scholar 

  • Spokes EGS (1979) An analysis of factors influencing measurements of dopamine, noradrenaline, glutamate decarboxylase and choline acetylase in human post-mortem brain tissue. Brain 102:333–346

    CAS  PubMed  Google Scholar 

  • Spokes GS, Garrett NJ, Iversen LL (1979) Differential effects of agonel status on measurements of GABA and Glutamatic-decarboxylase in human postmortem brain-tissue from control and Huntingtons-chorea subjects. J Neurochem 33:773–778

    CAS  PubMed  Google Scholar 

  • Struble RG, Powers RE, Cassanova MF, Kitt CA, Brown EC, Price DL (1987) Neuropep-tidergic systems in plaques of Alzheimer’s disease. J Neuropathol Exp Neurol 46(5):567–584

    CAS  PubMed  Google Scholar 

  • Tagliavini F, Pilleri G (1983) Neuronal counts in basal nucleus of Meynert in Alzheimer’s disease and in simple senile dementia. Lancet 1:469–470

    CAS  PubMed  Google Scholar 

  • Tanzi RE, Gusella JF, Watkins PC, Bruns GAP, St. George-Hyslop P, Van Keuren MLV, Patterson D, Pagan S, Kurnit DM, Neve RL (1987) Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235:880–884

    Google Scholar 

  • Terry RD (1985) Some unanswered questions about the mechanisms and aetiology of Alzheimer’s disease. In Alzheimer’s disease. Senile dementia of Alzheimer’s type — aging of the brain. Dan Med Bull 31(2):22–24

    Google Scholar 

  • Terry RD, Wisniewski HM (1972) Ultrastructure of senile dementia and of experimental analogs. In: Gaitz CM (ed) Advances in behavioural biology, vol 3. Aging and the brain. Plenum Press, New York, pp 89–116

    Google Scholar 

  • Terry RD, Fitzgerald C, Peck A, Millner J, Farmer P (1977) Cortical cell counts in senile dementia. J Neuropathol Exp Neurol 36:633

    Google Scholar 

  • Terry RD, Peck A, Deteresa R, Schecter R (1981) Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Ann Neurol 10:184–192

    CAS  PubMed  Google Scholar 

  • Terry RD, Hansen LA, DeTeresa R, Davies P, Tobias H, Katzman R (1987) Senile dementia of the Alzheimer type without neocortical neurofibrillary tangles. J Neuropathol Exp Neurol 46(3):262–268

    CAS  PubMed  Google Scholar 

  • Tomlinson BE (1961) The ageing brain. In: Smith TW, Cavanagh JB (eds) Recent Advances in Neuropathology 1. Churchill Livingstone 1979, Edinburgh, pp 129–159

    Google Scholar 

  • Tomlinson BE, Corsellis JAN (1984) Ageing and the dementias. In: Adams JH, Corsellis JAN, Duchen LW (eds) Greenfield’s Neuropathology, 4th edn. Arnold, London, ch. 20, pp 951– 1025

    Google Scholar 

  • Tomlinson BE, Henderson G (1976) Some quantitative cerebral findings in normal and demented old people. In: Terry RD, Gershon S (eds) Neurobiol Aging vol 3. Raven Press, New York, pp 183–204

    Google Scholar 

  • Tomlinson BE, Blessed B, Roth M (1968) Observations on the brains of non-demented old people. J Neurol Sci 7:331–356

    CAS  PubMed  Google Scholar 

  • Tomlinson BE, Blessed B, Roth M (1970) Observations on the brains of demented old people. J Neurol Sci 11:205–242

    CAS  PubMed  Google Scholar 

  • Tomlinson BE, Irving D, Blessed G (1981) Cell loss in the locus ceruleus in senile dementia of Alzheimer type. J Neurol Sci 49:419–428

    CAS  PubMed  Google Scholar 

  • Tomlinson BE, Irving D, Blessed G (1982) Cell loss in the locus coeruleus in senile dementia of Alzheimer type. J Neurol Sci 49:419–428

    Google Scholar 

  • Uemura E, Hartmann HA (1978) RNA content and volume of nerve cell bodies in human brains 1. pre-frontal cortex in ageing in demented subjects. J Neurobiol Exp Neurol 37:487–497

    CAS  Google Scholar 

  • Van Broeckhoven C, Genthe AM, Vandenberghe A, Horsthemke B, Backhovens H, Raeymaekers P, Van Hul W, Wehnert A, Gheuens J, Cras P, Bruyland M, Martin JJ, Salbaum M, Multhaup G, Masters CL, Beyreuther K, Gurling HMD, Mullan MJ, Holland A, Barton A, Irving N, Williamson R, Richards S J, Hardy JA (1987) Failure of familial Alzheimer’s disease to segregate with the A 4-amyloid gene in several European families. Nature 329:153–155

    PubMed  Google Scholar 

  • Vijayashanka N, Brody H (1971) Neuronal population of the human abducens nucleus. Anat Rec 169:447

    Google Scholar 

  • Vijayashanka N, Brody H (1973) The neuronal population of the nuclei of the trochlear nerve and the locus ceruleus in the human. Anat Rec 172:421–422

    Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, DeLong MR (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239

    CAS  PubMed  Google Scholar 

  • Wilcock GK, Esiri MM, Bowen DM, Smith CT (1982) Correlation of cortical choline acetyl-transferase activity with the severity of dementia and histological abnormalities. J Neurol Sci 57:407–417

    CAS  PubMed  Google Scholar 

  • Wilcock GK, Esiri MM, Bowen DM, Smith CCT (1983) The nucleus in Alzheimer’s disease cell counts and cortical biochemistry. Neuropathol Appl Neurobiol 9:175–179

    CAS  PubMed  Google Scholar 

  • Winblad B, Adolfsson R, Gottfries CG, Oreland L, Roos BE (1978) Brain mono-amines, mono amine metabolites and enzymes in physiological aging and senile dementia. In recent developments in Mass Spectrometry in Biochemistry and Medicine, Vol 1:253–267

    Google Scholar 

  • Wischik CM, Crowther RA, Stewart M, Roth M (1985) Subunit structure of paired helical filaments in Alzheimer’s disease. J Cell Biol 100:1905–1912

    CAS  PubMed  Google Scholar 

  • Wischik CM, Crowther RA (1986) The Alzheimer Tangle and Aging. In: Govoni S, Battaini F (eds) Modification of Cell to Cell Signals during Normal and Pathological Aging. NATO ASI Series H: Cell Biology, Vol 9:227–234

    Google Scholar 

  • Wischik CM, Novak M, Thogersen HC, Edwards PC, Runswick MJ, Jakes R, Walker JE, Milstein C, Roth M, Klug A (1988 a) Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc Natl Sci USA Vol 85:4506–4510

    CAS  Google Scholar 

  • Wischik CM, Novak M, Edwards PC, Klug A, Tichelaar W, Crowther RA (1988 b) Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci Vol 85:4884–888

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wisniewski HM, Wrzolek M (1987) Pathogenesis of amyloid formation in Alzheimer disease, Down’s syndrome and scrapie. Ciba Found Symp 135

    Google Scholar 

  • Wisniewski HM, Currie JR, Barcikowska M, Robakis NK, Miller DL (1988) Alzheimer’s Disease, a Cerebral Form of Amyloidosis. In: Pouplard-Barthelaix A, Emile J, Christen Y (eds) Immunology and Alzheimer’s Disease. Springer, Berlin Heidelberg New York Tokyo, pp 1–6

    Google Scholar 

  • Wong CW, Quaranta V, Glenner GG (1985) Neuritic plaques and cerebrovascular amyloid in Alzheimer disease are antigenically realated. Proc Natl Acad Sci USA 82:8729–8732

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto T, Hirano A (1985) Nucleus raphe dorsalis in Alzheimer’s disease: neurofibrillary tangles and loss of large neurons. Ann Neurol 17:573–577

    CAS  PubMed  Google Scholar 

  • Yates CM, Simpson J, Maloney HFJ, Gordon A (1979) Dopamine in Alzheimer’s disease and senile dementia. Lancet ii:851–852

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roth, M., Mountjoy, C.Q. (1989). Neurobiologische Aspekte psychischer Störungen bei degenerativen Hirnerkrankungen im Alter. In: Cooper, B., et al. Alterspsychiatrie. Psychiatrie der Gegenwart. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71825-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71825-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71826-7

  • Online ISBN: 978-3-642-71825-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics