Schlafforschung

  • H. Schulz

Zusammenfassung

Die Schlafforschung hat sich seit dem Beginn der sechziger Jahre sehr rasch entwickelt, zuerst als Grundlagenwissenschaft und dann zunehmend als klinische Disziplin. Neben der Anwendung elektrophysiologischer Methoden, die eine störungsarme kontinuierliche Registrierung des Schlafverlaufes erlaubten, war der entscheidende Grund für das wachsende Interesse an der Schlafforschung die Entdeckung von zwei unterschiedlichen Formen des Schlafes, nämlich Schlaf mit langsamen Wellen im EEG und Schlaf mit raschen Augenbewegungen. Nur dem Beobachter des Schlafverhaltens erscheint Schlaf als passiver und homogener Zustand; physiologisch handelt es sich um einen aktiven und vielfaltig gegliederten Prozeß, in dem sich verschiedene Zustände abwechseln und zyklisch wiederkehren. Schließlich befruchtete die enge Beziehung zwischen Traumerleben und dem Schlaf mit raschen Augenbewegungen die Entwicklung ganz wesentlich, da hiermit ein experimentell prüf bares Paradigma für die Interaktion von unterscheidbaren Funktionszuständen des Gehirns und korrespondierenden Bewußtseinszuständen zur Verfügung stand.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aaronson ST, Rashed S, Biber MP, Hobson JA (1982) Brain state and body position. Arch Gen Psychiatry 39:330–335PubMedCrossRefGoogle Scholar
  2. Alihanka J, Vaahtoranta K (1979) A static charge sensitive bed. A new method for recording body movements during sleep. Electroencephalogr Clin Neurophysiol 46:731–734PubMedCrossRefGoogle Scholar
  3. Aschoff J, Wever R (1981) The circadian system of man. In: Aschoff J (ed) Handbook of behavioral neurobiology, vol 4. Biological rhythms. Plenum, New YorkGoogle Scholar
  4. Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118:273–274PubMedCrossRefGoogle Scholar
  5. Association of Sleep Disorders Centers (ed) (1979) Diagnostic classification of sleep and arousal disorders, 1st edn, prepared by the Sleep Disorders Classification Committee, H.P. Roffwarg, Chairman. Sleep 2:1–137Google Scholar
  6. Baker TL, Foutz AS, McNerney V, Mitler MM, Dement WC (1982) Canine model of narcolepsy: genetic and developmental determinants. Exp Neurol 75:599–602CrossRefGoogle Scholar
  7. Baust W (1970) Die Phänomenologie des Schlafes. In: Baust W (Hrsg) Ermüdung, Schlaf und Traum. Wissenschaftliche Verlagsgesellschaft, Stuttgart, S 99–144Google Scholar
  8. Becker K (1984) Pilotstudie zur Entwicklung einer Skala zur Erfassung extrem gesteigerter Schlafbereitschaft (Narkolepsie). Unveröffentlichte Diplomarbeit im Fach Psychologie, Universität MannheimGoogle Scholar
  9. Beersma DGM, Daan S, Hoofdakker RH van den (1984) Distribution of REM latencies and other sleep phenomena in depression as explained by a single ultradian rhythm disturbance. Sleep 7:126–136PubMedGoogle Scholar
  10. Berger M, Doerr P, Lund R, Bronisch T, Zerssen D von (1982) Neuroendocrinological and neurophysiological studies in major depressive disorders: are there biological markers for the endogenous subtype? Biol Psychiatry 17:1217–1242PubMedGoogle Scholar
  11. Bonnet MH (1986) Performance and sleepiness following moderate sleep disruption and slow wave sleep deprivation. Physiol Behav 37:915–918PubMedCrossRefGoogle Scholar
  12. Borbély AA (1984) Regulationsprinzipien des Schlafes. Internist 25:519–522PubMedGoogle Scholar
  13. Borbély AA, Neuhaus HU, Mattmann P, Waser PG (1981) Langzeitregistrierung der Bewegungsaktivität: Anwendungen in Forschung und Klinik. Schweden Med Wochenschr 111:730–735Google Scholar
  14. Bremer F (1935) Cerveau „isolé“et physiologie du sommeil. CR Soc Biol 118:1235–1241Google Scholar
  15. Czeisler CA, Weitzman ED, Moore-Ede MC, Zimmerman JC, Knauer RS (1980) Human sleep: its duration and organization depend on its circadian phase. Science 210:1264–1267PubMedCrossRefGoogle Scholar
  16. Daan S, Beersma DGM, Borbély AA (1984) Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol 246 (Regulatory Integrative Comp Physiol 15):R161–R178PubMedGoogle Scholar
  17. Dement WC (1960) The effect of dream deprivation. Science 131:1705–1707PubMedCrossRefGoogle Scholar
  18. Dement WC (1969) The biological role of REM sleep (circa 1968). In: Kales A (ed) Sleep physiology and pathology. Lippincott, Philadelphia, pp 245–265Google Scholar
  19. Dolce G, Kunkel H (eds) (1975) CEAN. Compterized EEG analysis. Fischer, StuttgartGoogle Scholar
  20. Ecónomo C von (1926) Die Pathologie des Schlafes. In: Bethe A, Bergmann G von, Embden G, Ellinger A (Hrsg) Handbuch der normalen und pathologischen Physiologie, Bd 17. Springer, Berlin, S 591–610Google Scholar
  21. Finke J, Schulte W (1970) Schlafstörungen. Ursachen und Behandlung. Thieme, StuttgartGoogle Scholar
  22. Ganguli R, Reynolds CF III, Kupfer DJ (1987) Electroencephalographic sleep in young nevermedicated schizophrenics. Arch Gen Psychiatry 44:36–44PubMedCrossRefGoogle Scholar
  23. Gillberg M, Åkerstedt T (1982) Body temperature and sleep at different times of day. Sleep 5:378–388PubMedGoogle Scholar
  24. Gillin JC, Duncan W, Pettigrew KD (1979) Successful separation of depressed, normal and insomniac subjects by EEG sleep data. Arch Gen Psychiatry 36:85–90PubMedCrossRefGoogle Scholar
  25. Guilleminault C (ed) (1982) Sleeping and waking disorders. Indications and techniques. Addison-Wesley, Menlo Park/CalifGoogle Scholar
  26. Guilleminault C, Dement WC (1978) Sleep apnea syndromes. Alan R. Liss, New YorkGoogle Scholar
  27. Gulevich G, Dement WC, Johnson LC (1966) Psychiatric and EEG observations on a case of prolonged (264 hours) wakefulness. Arch Gen Psychiatry 15:29–35PubMedCrossRefGoogle Scholar
  28. Hasan J (1983) Differentiation of normal and disturbed sleep by automatic analysis. Acta Physiol Scand [Suppl]526:3–103Google Scholar
  29. Haustein W, Pilcher J, Klink J, Schulz H (1986) Automatic analysis overcomes limitations of sleep stage scoring. Electroencephalogr Clin Neurophysiol 64:364–374PubMedCrossRefGoogle Scholar
  30. Hess CW, Scharfetter C, Mumenthaler M (1984) Klinik der Narkolepsie-Kataplexie-Syndrome. Nervenarzt 55:391–401PubMedGoogle Scholar
  31. Hess WR (1948) Die funktionelle Organisation des vegetativen Nervensystems. Schwabe, BaselGoogle Scholar
  32. Hobson JA, McCarley RW, Wyzinski PW (1975) Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189:55–58PubMedCrossRefGoogle Scholar
  33. Hobson JA, Lydie R, Baghdoyan HA (1986) Evolving concepts of sleep cycle generation: from brain centers to neuronal populations. Behav Brain Sci 9:371–448CrossRefGoogle Scholar
  34. Hörne JA, Wilkinson S (1985) Chronic sleep reduction: daytime vigilance performance and EEG measures of sleepiness with particular reference to “practice” effects. Psychophysiology 22:69–78PubMedCrossRefGoogle Scholar
  35. Inoué S, Borbély AA (1985) Endogenous sleep substances and sleep regulation. VNU Science Press BV, UtrechtGoogle Scholar
  36. Johnson HM (1931) Sleep. In: Valentine WL (ed) Readings in experimental psychology. Harper & Brothers, New York London, pp 241–291Google Scholar
  37. Johnson LC, Naitoh P, Moses JM, Lubin A (1974) Interaction of REM deprivation and stage 4 deprivation with total sleep loss: experiment 2. Psychophysiology 11:147–159PubMedCrossRefGoogle Scholar
  38. Jouvet M (1972) The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergeb Physiol 64:166–307PubMedGoogle Scholar
  39. Jouvet M (1984) Méchanismes des états de sommeil. In: Benoit O (ed) Physiologie du sommeil. Masson, Paris, pp 1–18Google Scholar
  40. Jovanović UJ (1972) Sexuelle Reaktionen und Schlafperiodik beim Menschen. Enke, StuttgartGoogle Scholar
  41. Karger P (1925) Über den Schlaf des Kindes. Jahrbuch für Kinderheilkunde, Beiheft 5Google Scholar
  42. Kawamura H, Inoué S, Ebihara S, Noguchi S (1982) Neurophysiological studies of the SCN in the rat and in the Java sparrow. In: Aschoff J, Daan S, Groos G (eds) Vertebrate circadian systems. Springer, Berlin Heidelberg New York, pp 106–111Google Scholar
  43. Kleitman N (1963) Sleep and wakefulness, 2nd edn. University of Chicago Press, Chicago/Ill.Google Scholar
  44. Kronauer RE, Czeisler CA, Pilato SF, Moore-Ede MC, Weitzman ED (1982) Mathematical model of the human circadian system with two interacting oscillators. Am J Physiol 242:R3–R17PubMedGoogle Scholar
  45. Laer H (1900) Die Literatur der Psychiatrie, Neurologie und Psychologie von 1459–1799, 3 Bde. Georg Reimer, BerlinGoogle Scholar
  46. Loomis AL, Harvey EN, Hobart GA (1937) Cerebral states during sleep as studied by human brain potentials. J Exp Psychol 21:127–144CrossRefGoogle Scholar
  47. Lubin A, Moses JM, Johnson LC, Naitoh P (1974) The recuperative effects of REM sleep and stage 4 sleep on human performance after complete sleep loss: experiment 1. Psychophysiology 11:133–146PubMedCrossRefGoogle Scholar
  48. Lund R (1974) Personality factors and desynchronization of circadian rhythms. Psychosom Med 36:224–228PubMedGoogle Scholar
  49. Lydie R, McCarley RM, Hobson JA (1985) Timing function of the dorsal raphe nucleus and the temporal organization of the ultradian sleep cycle. In: Schulz H, Lavie P (eds) Ultradian rhythms in physiology and behavior. Springer, Berlin Heidelberg New York (Experimental Brain Research Supplements 12, pp 125–144)Google Scholar
  50. McCarley RW, Hobson JA (1975) Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science 189:58–60PubMedCrossRefGoogle Scholar
  51. McCarley RW, Massaquoi S (1985) The REM sleep ultradian rhythm: a limit cycle mathematical model. In: Schulz H, Lavie P (eds) Ultradian rhythms in physiology and behavior. Springer, Berlin Heidelberg New York (Experimental Brain Research Supplements 12, pp 288–308)CrossRefGoogle Scholar
  52. Mendelson WB, Gillin JC, Wyatt RJ (1977) Human sleep and its disorders. Plenum, New York LondonGoogle Scholar
  53. Moore-Ede MC (1986) Physiology of the circadian timing system: predictive versus reactive homeostasis. Am J Physiol 250:R735–R752Google Scholar
  54. Mullen PE, Linsell CR, Parker D (1986) Influence of sleep disruption and calorie restriction on biological markers of depression. Lancet II:1051–1055CrossRefGoogle Scholar
  55. Muzet A, Libert JP (1985) Effects of ambient temperature on sleep in man. In: Koella WP, Rüther E, Schulz H (eds) Sleep 84. Fischer, Stuttgart, pp 74–76Google Scholar
  56. Orem J, Barnes CD (eds) (1980) Physiology in sleep. Academic Press, New YorkGoogle Scholar
  57. Parkes JD (1985) Sleep and its disorders. Saunders, LondonGoogle Scholar
  58. Parkes JD (1986) The parasomnias. Lancet 11:1021–1025CrossRefGoogle Scholar
  59. Parmeggiani PL (1985) Homeostatic regulation during sleep: facts and hypotheses. In: McGinty DJ et al. (eds) Brain mechanisms of sleep. Raven, New York, pp 385–397Google Scholar
  60. Parmeggiani PL, Azzaroni A, Cevolani D, Ferrari G (1986) Polygraphie study of anterior hypothalamic-preoptic neuron thermosensitivity during sleep. Electroencephalogr Clin Neurophysiol 63:289–295PubMedCrossRefGoogle Scholar
  61. Partinen M, Eskelinen L, Tuomi K (1985) Epidemiology of insomnia: environmental factors. In: Koella WP, Rüther E, Schulz H (eds) Sleep 84. Fischer, Stuttgart, pp 42–44Google Scholar
  62. Piel E (1985) Schlafschwierigkeiten und soziale Persönlichkeit. Einige sozial-empirische Daten. In: Faust V (Hrsg) Schlafstörungen. Häufigkeit — Ursachen — Schlafmittel — nichtmedika-mentöse Schlafhilfen. Hippokrates, Stuttgart, S 14–26Google Scholar
  63. Ploog D (1953) Physiologie und Pathologie des Schlafes. Fortschr Neurol Psychiatr 21:16–56Google Scholar
  64. Rechtschaffen A, Kales A (eds) (1968) A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Public Health Service, US Government Printing Office, Washington/D.C.Google Scholar
  65. Reynolds CF III, Coble PA, Kupfer DJ, Shaw DH (1982) Depressive patients and the sleep laboratory. In: Guilleminault C (ed) Sleeping and waking disorders: indications and techniques. Addison-Wesley, Menlo Park/Calif., pp 245–263Google Scholar
  66. Richter CP (1965) Biological clocks in medicine and psychiatry. C. C. Thomas, Springfield/Ill.Google Scholar
  67. Rush AJ, Giles DE, Roffwarg HP, Parker CR (1982) Sleep EEG and dexamethasone suppression test. Findings in outpatients with unipolar major depressive disorders. Biol Psychiatry 17:327–341PubMedGoogle Scholar
  68. Sallanon M, Buda C, Janin M, Jouvet M (1982) Restoration of paradoxical sleep by cerebrospinal fluid transfer to PCPA pretreated insomniac cats. Brain Res 251:137–147PubMedCrossRefGoogle Scholar
  69. Sallanon M, Buda C, Janin M, Jouvet M (1983) Paradoxical sleep deprivation and indolamines. Brain Res 268:95–104PubMedCrossRefGoogle Scholar
  70. Schneider-Helmert D, Schenker J (1980) Die normal arterielle Hypotension im Schlaf. Schweden Med Wochenschr 110:563–570Google Scholar
  71. Schulz H (1984) Methoden der Schlafforschung. Internist 25:523–530PubMedGoogle Scholar
  72. Schulz H, Lund R (1985) On the origin of early REM episodes in the sleep of depressed patients: a comparison of three hypotheses. Psychiatr Res 16:65–77CrossRefGoogle Scholar
  73. Simon O (1977) Das Elektroenzephalogramm. Einführung und Atlas. Urban & Schwarzenberg, München/WienGoogle Scholar
  74. Sleep (1986) Special issue: Narcolepsy. Sleep 9:99–291Google Scholar
  75. Spiegel R (1981) Sleep and sleepiness in advanced age. Spectrum, New YorkGoogle Scholar
  76. Szymanski JS (1918–1920) Aktivität und Ruhe bei Tieren und Menschen. Z Allg Physiol 18:105–162Google Scholar
  77. Vertes RP (1977) Selective firing of rat pontine gigantocellullar neurons during movement and REM sleep. Brain Res 128:146–152PubMedCrossRefGoogle Scholar
  78. Vogel GW, Vogel F, McAbee RS, Thurmond AJ (1980) Improvement of depression by REM sleep deprivation. Arch Gen Psychiatry 37:247–253PubMedCrossRefGoogle Scholar
  79. Webb WB, Agnew HW (1974) The effects of a chronic limitation of sleep length. Psychophysiology 11:265–274PubMedCrossRefGoogle Scholar
  80. Wever RA (1979) The circadian system of man. Results of experiments under temporal isolation. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  81. Wever RA (1985) Internal interactions within the human circadian system: the masking effect. Experientia 41:332–342PubMedCrossRefGoogle Scholar
  82. Wever RA (1986) Characteristics of circadian rhythms in human functions. J Neural Transm [Suppl]21:323–373Google Scholar
  83. Williams RL, Karacan I, Hursch CJ (1974) Electroencephalography (EEG) of human sleep: clinical application. Wiley, New YorkGoogle Scholar
  84. Wittern R (1978) Der Schlaf als medizinisches Problem am Beginn der Neuzeit. Habilitationsschrift. Institut für Geschichte der Medizin, Universität MünchenGoogle Scholar
  85. Zarcone VP, Benson KL, Berger PA (1987) Abnormal rapid eye movement latencies in schizophrenia. Arch Gen Psychiatry 44:45–48PubMedCrossRefGoogle Scholar
  86. Zulley J, Campbell SS (1985) Napping behavior during “spontaneous internal desynchronization”: sleep remains in synchrony with body temperature. Human Neurobiol 4:123–126Google Scholar
  87. Zulley J, Wever R, Aschoff J (1981) The dependence of onset and duration of sleep on the circadian rhythm of rectal temperature. Pflügers Arch Gesamte Physiol 391:314–318Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • H. Schulz

There are no affiliations available

Personalised recommendations