Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 82))

Abstract

From a pharmacologist’s point of view, radioimmunoassay (RIA) represents a highly sophisticated form of bioassay, substituting the classical smooth muscle strip with a soluble antibody as the biological reactant. Both assay methods involve indirectly assessing the concentration of the unknown by comparing its effects on a measurable read-out of the reaction evoked (changes in radioactivity, tension, optical density, etc.) with those of known concentrations of a standard. Many bioassay techniques involve measuring biological responses that are mediated by agonist—receptor interactions. Such interactions usually occur in accordance with the law of mass action, similarly to antigen—antibody reactions. The presence of a radioactive tracer in RIA greatly enhances the sensitivity of the detection by limiting the mass of the antigen involved, to an extent inversely related to its specific activity. The specificity is also potentially increased in RIA vis-à-vis bioassay by virtue of a smaller number of possible reagents being present in a highly diluted antiserum than in isolated cell preparations or whole tissue fragments. Obviously, biological activity of the unknown is inherently measured by the latter, but not necessarily by the former. Thus, what is measured by RIA is immunochemical behaviour which may or may not be related to parts of the molecule responsible for biological activity (Yalow 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alessandrini P, Avogaro P, Bittolo Bon G, Patrignani P, Patrono C (1985) Physiologic variables affecting thromboxane B2 production in human whole blood. Thromb Res. 37: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Berson SA, Yalow RS (1968) Immunochemical heterogeneity of parathyroid hormone. J Clin Endocrinol. 28: 1037–1047

    Article  CAS  Google Scholar 

  • Catella F, Pugliese F, Patrignani P, Filabozzi P, Ciabattoni G, Patrono C (1984) Differential platelet and renal effects of sulfinpyrazone in man (Abstract.) Clin Res. 32: 239A

    Google Scholar 

  • Ciabattoni G, Pugliese F, Cinotti GA, Stirati G, Ronci R, Castrucci G, Pierucci A, Patrono C (1979) Characterization of furosemide-induced activation of the renal prostaglandin system. Eur J Pharmacol. 60: 181–187

    Article  PubMed  CAS  Google Scholar 

  • Ciabattoni G, Cinotti GA, Pierucci A, Simonetti BM, Manzi M, Pugliese F, Barsotti P, Pecci G, Taggi F, Patrono C (1984) Effects of sulindac and ibuprofen in patients with chronic glomerular disease. N Engl J Med. 310: 279–283

    Article  PubMed  CAS  Google Scholar 

  • Ciabattoni G, Boss AH, Patrignani P, Catella F, Simonetti BM, Pierucci A, Pugliese F, Filabozzi P, Patrono C (1987 a) Effects of sulindac on renal and extra-renal eicosanoid synthesis in man. Clin Pharmacol Ther. 41: 380–383

    Google Scholar 

  • Ciabattoni G, Boss AH, Daffonchio L, Daugherty J, FitzGerald GA, Catella F, Dray F, Patrono C (1987 b) Radioimmunoassay measurement of 2,3-dinor-metabolites of prostacyclin and thromboxane in human urine. Adv Prostaglandin, Thromboxane Leukotriene Res (in press)

    Google Scholar 

  • Ferreira SH, Vane JR (1967) Prostaglandins: their disappearance from and release into the circulation. Nature. 216: 868–873

    Article  PubMed  CAS  Google Scholar 

  • FitzGerald GA, Brash AR, Falardeau P, Oates JA (1981) Estimated rate of prostacyclin secretion into the circulation of normal man. J Clin Invest. 68: 1272–1276

    Article  Google Scholar 

  • FitzGerald GA, Pedersen AK, Patrono C (1983) Analysis of prostacyclin and thromboxane biosynthesis in cardiovascular disease. Circulation. 67: 1174–1177

    Article  Google Scholar 

  • FitzGerald GA, Reilly IA, Pedersen AK (1985) The biochemical pharmacology of thromboxane synthase inhibition in man. Circulation. 72: 1194–1201

    Article  Google Scholar 

  • Gryglewski RJ, Bunting S, Moncada S, Flower RJ, Vane JR (1976) Arterial walls are protected against deposition of platelet thrombi by a substance (prostaglandin X) which they make from prostaglandin endoperoxides. Prostaglandins. 12: 685–700

    Article  PubMed  CAS  Google Scholar 

  • Hamberg M, Svensson J, Samuelsson B (1975) Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci USA. 72: 2994–2998

    Article  PubMed  CAS  Google Scholar 

  • Jaffe BM, Behrman HR, Parker CW (1973) Radioimmunoassay measurement of prostaglandins E, A and F in human plasma. J Clin Invest. 52: 398–407

    Article  PubMed  CAS  Google Scholar 

  • Lawson JA, Patrono C, Ciabattoni G, FitzGerald GA (1986) Long-lived enzymatic metabolites of thromboxane B2 in the human circulation. Anal Biochem. 155: 198–205

    Article  PubMed  CAS  Google Scholar 

  • Patrignani P, Filabozzi P, Patrono C (1982) Selective cumulative inhibition of platelet thromboxane production by low-dose aspirin in healthy subjects. J Clin Invest. 69: 1366–1372

    Article  PubMed  CAS  Google Scholar 

  • Patrignani P, Filabozzi P, Catella F, Pugliese F, Patrono C (1984) Differential effects of dazoxiben, a selective thromboxane-synthase inhibitor, on platelet and renal prosta- glandin-endoperoxide metabolism. J Pharmacol Exp Ther. 228: 472–77

    PubMed  CAS  Google Scholar 

  • Patrono C, Dunn MJ (1987) The clinical significance of inhibition of renal prostaglandin synthesis. Kidney Int, in press

    Google Scholar 

  • Patrono C, Ciabattoni G, Pinca E, Pugliese F, Castrucci G, De Salvo A, Satta MA, Peskar BA (1980) Low dose aspirin and inhibition of thromboxane B2 production in healthy subjects. Thromb Res 17:317–327

    Google Scholar 

  • Patrono C, Pugliese F, Ciabattoni G, Patrignani P, Maseri A, Chierchia S, Peskar BA, Cinotti GA, Simonetti BM, Pierucci A (1982) Evidence for a direct stimulatory effect of prostacyclin on renin release in man. J Clin Invest. 69: 231–239

    Article  PubMed  CAS  Google Scholar 

  • Patrono C, Ciabattoni G, Patrignani P, Pugliese F, Filabozzi P, Catella F, Davi G, Forni L (1985 a) Clinical pharmacology of platelet cyclo-oxygenase inhibition. Circulation. 72: 1177–1184

    Article  PubMed  CAS  Google Scholar 

  • Patrono C, Ciabattoni G, Remuzzi G, Gotti E, Bombardieri S, Di Munno O, Tartarelli G, Cinotti GA, Simonetti BM, Pierucci A (1985 b) Functional significance of renal prostacyclin and thromboxane A2 production in patients with systemic lupus erythematosus. J Clin Invest. 76: 1011–1018

    Google Scholar 

  • Patrono C, Ciabattoni G, Pugliese F, Pierucci A, Blair I A, FitzGerald GA (1986) Estimated rate of thromboxane secretion into the circulation of normal humans. J Clin Invest. 77: 590–594

    Article  PubMed  CAS  Google Scholar 

  • Pedersen AK, FitzGerald GA (1985) Cyclooxygenase inhibition, platelet function and metabolite formation during chronic sulfinpyrazone dosing. Clin Pharmacol Ther. 37: 36–42

    Article  PubMed  CAS  Google Scholar 

  • Pedersen AK, Watson M, FitzGerald GA (1983) Inhibition of thromboxane synthase in serum: limitations of the measurement of immunoreactive 6-keto-PGFla. Thromb Res. 33: 99–103

    Article  Google Scholar 

  • Roberts LJ II, Sweetman BJ, Oates JA (1981) Metabolism of thromboxane B2 in man. Identification of twenty urinary metabolites. J Biol Chem. 256: 8384–8393

    PubMed  CAS  Google Scholar 

  • Roth J, Gorden P, Pastan I (1968) “Big insulin”: a new component of plasma insulin detected by immunoassay. Proc Natl Acad Sci USA. 61: 138–145

    Article  PubMed  CAS  Google Scholar 

  • Silverman R, Yalow RS (1971) Heterogeneity of parathyroid hormone: clinical and physiological implications. J Clin Invest. 52: 1958–1971

    Article  Google Scholar 

  • Steiner DF, Oyer PE (1967) The biosynthesis of insulin and a probable precursor of insulin by a human islet cell adenoma. Proc Natl Acad Sci USA. 57: 473–80

    Article  PubMed  CAS  Google Scholar 

  • Yalow RS (1982) The limitations of radioimmunoassay (RIA). Trends Anal Chem. 1: 128–131

    Article  CAS  Google Scholar 

  • Yalow RS (1985) Radioimmunoassay of hormones. In: Wilson JD, Foster DW (eds) Williams textbook of endocrinology, 7th edn. Saunders, Philadelphia, pp 123–132

    Google Scholar 

  • Zusman RM, Spector D, Caldwell BV, Speroff L, Schneider G, Mulrow PJ (1973) The effect of chronic sodium loading and sodium restriction on plasma prostaglandin A, E, and F concentrations in normal humans. J Clin Invest. 52: 1093–1098

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Patrono, C. (1987). Validation Criteria for Radioimmunoassay. In: Patrono, C., Peskar, B.A. (eds) Radioimmunoassay in Basic and Clinical Pharmacology. Handbook of Experimental Pharmacology, vol 82. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71809-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71809-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71811-3

  • Online ISBN: 978-3-642-71809-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics