Skip to main content

Development of Inhibitors of Sodium, Calcium Exchange

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 83))

Abstract

Electrically excitable cells process the Ca2+ which triggers excitation-response coupling in an efficient manner. Several Ca2+ transport systems have evolved by which to accomplish this task. These mechanisms typically act together to maintain Ca2+ homeostasis, thereby preventing buildup of cytoplasmic Ca2+ which would be cytotoxic. There are two plasmalemmal active transport systems which directly regulate Ca2+ fluxes in many types of cells. The first, a Ca2+, Mg2+-ATPase, is an ATP-dependent pump of low capacity, but high affinity that extrudes Ca2+ unidirectionally from the cell (Chap. 8). The other, an Na,Ca antiporter, moves Ca2+ via a carrier mechanism controlled by transmembrane electrical and Na+ concentration gradients. Since Na,Ca exchange is completely reversible, transmembrane Ca2+ movement can occur in either direction, depending on cellular conditions which regulate carrier activity. These are the only two Ca2+ transport processes known to remove Ca2+ from the cell.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen TJ, Baker PF (1985) Intracellular Ca indicator Quin-2 inhibits Ca influx via Na-Ca exchange in squid axon. Nature 315:755–756

    Article  PubMed  CAS  Google Scholar 

  • Ashavaid TF, Colvin RA, Messineo FC, Macalister T, Katz AM (1985) Effects of fatty-acids on sodium-calcium exchange in cardiac sarcolemmal membranes. J Mol Cell Cardiol 17:851–862

    Article  PubMed  CAS  Google Scholar 

  • Baker PF, DiPolo R (1984) Axonal calcium and magnesium homeostasis. Curr Top Membr Trans 22:195–247

    CAS  Google Scholar 

  • Baker PF, Blaustein MP, Hodgkin AL, Steinhardt RA (1967) The effect of sodium concentration on calcium movements in giant axons of Loligo forbesi. J Physiol 192:43P–44P

    CAS  Google Scholar 

  • Baker PB, Blaustein MP, Hodgkin AL, Steinhardt RA (1969) The influence of calcium on sodium efflux in squid axons. J Physiol 200:431–458

    PubMed  CAS  Google Scholar 

  • Barry WH, Smith TW (1982) Mechanisms of transmembrane calcium movement in cultured chick embryo ventricular cells. J Physiol 325:243–260

    PubMed  CAS  Google Scholar 

  • Benos DJ (1982) Amiloride: a molecular probe of sodium transport in tissues and cells. Am J Physiol 242:C131–C145

    PubMed  CAS  Google Scholar 

  • Blaustein MP (1977) Effects of internal and external cations and of ATP on sodium-calcium and calcium-calcium exchange in squid axons. Biophys J 20:79–111

    Article  PubMed  CAS  Google Scholar 

  • Blaustein MP, Hamlyn JM (1984) Sodium transport inhibition, cell calcium, and hypertension. Am J Med 77:45–59

    PubMed  CAS  Google Scholar 

  • Bonvallet R, Rougier O, Tourneur Y (1984) Role of Na-Ca exchange in the calcium paradox in frog auricular trabeculae. J Mol Cell Cardiol 16:623–632

    Article  PubMed  CAS  Google Scholar 

  • Braunwald E, Kloner RA (1985) Myocardial reperfusion: a double-edged sword? J Clin Invest 76:1713–1719

    Article  PubMed  CAS  Google Scholar 

  • Bush LR, Kaczorowski GJ, Siegl PKS (1985) Antiarrhythmic properties of dichlorobenza-mil, a sodium-calcium exchange inhibitor. Circulation 72-III:313

    Google Scholar 

  • Caroni P, Reinlib L, Carafoli E (1980) Charge movements during the Na-Ca exchange in heart sarcolemmal vesicles. Proc Natl Acad Sci USA 77:6354–6358

    Article  PubMed  CAS  Google Scholar 

  • Caroni P, Villani F, Carafoli E (1981) The cardiotoxic antibiotic doxorubicin inhibits the Na-Ca exchange of dog heart sarcolemmal vesicles. FEBS Lett 130:184–186

    Article  PubMed  CAS  Google Scholar 

  • Chapman RA (1983) Control of cardiac contractility at the cellular level. Am J Physiol 245:H535–H552

    PubMed  CAS  Google Scholar 

  • Chapman RA, Coray A, McGuigan JAS (1983) Sodium-calcium exchange in mammalian heart: the maintenance of low intracellular calcium concentration. In: Drake-Holland AJ, Noble MIM (eds) Cardiac metabolism. Wiley, New York, p 117

    Google Scholar 

  • Chapman RA, Rodrigo GC, Tunstall J, Yates RJ, Busselen P (1984) Calcium paradox of the heart: a role for intracellular sodium ions. Am J Physiol 247:H874–H879

    PubMed  CAS  Google Scholar 

  • Cragoe E, Kaczorowski GJ, Reeves JP, Slaughter RS (1984) Amiloride analogs interact with the monovalent cation binding site of the bovine heart sodium-calcium exchange carrier. J Physiol 353:74p

    Google Scholar 

  • Cuthbert AW, Fanelli GM (1978) Effect of some pyrazinecarboxamides on sodium transport in frog skin. Br J Pharmacol 63:139–149

    PubMed  CAS  Google Scholar 

  • Daly MJ, Elz JS, Nayler W (1984) Sarcolemmal enzymes and the Na-Ca exchange in hypoxic, ischemic, and reperfused rat hearts. Am J Physiol 247:H237–H243

    PubMed  CAS  Google Scholar 

  • Davis R, Czech M (1985) Amiloride directly inhibits growth factor receptor tyrosine kinase activity. J Biol Chem 260:2543–2551

    PubMed  CAS  Google Scholar 

  • Dubinsky WP, Frizzell RA (1983) A novel effect of amiloride on H-dependent Na transport. Am J Physiol 245:C157–C159

    PubMed  CAS  Google Scholar 

  • Eisner DA, Lederer WJ, Vaughan-Jones RD (1983) The control of tonic tension by membrane potential and intracellular sodium activity in the sheep cardiac Purkinje fiber. J Physiol 335:723–743

    PubMed  CAS  Google Scholar 

  • Erdreich A, Spanier R, Rahamimoff H (1983) The inhibition of Na-dependent Ca uptake by verapamil in synaptic plasma membrane vesicles. Eur J Pharmacol 90:193–202

    Article  PubMed  CAS  Google Scholar 

  • Floreani M, Luciani S (1984) Amiloride: relationship between cardiac effects and inhibition of Na-Ca exchange. Eur J Pharmacol 105:317–322

    Article  PubMed  CAS  Google Scholar 

  • Garcia ML, King VF, Kaczorowski GJ (1985) Inhibition of Na-Ca exchange in cardiac sar-colemmal membrane vesicles by bepridil. Circulation 72-III:313

    Google Scholar 

  • Garcia ML, King VF, Kaczorowski GJ (1986) Interaction of bepridil and amiloride with the Na-Ca antiporter in cardiac sarcolemmal vesicles. Biophys J 49:545a

    Google Scholar 

  • Gill DL, Chueh S-H, Whitlow CL (1984) Functional importance of the synaptic plasma membrane calcium pump and sodium-calcium exchanger. J Biol Chem 259:10807–10813

    PubMed  CAS  Google Scholar 

  • Glitsch HG, Reuter H, Scholz H (1970) The effect of the internal sodium concentration on calcium fluxes in isolated guinea-pig auricles. J Physiol 209:25–43

    PubMed  CAS  Google Scholar 

  • Hadley RW, Hume JR, Kaczorowski GJ, Siegl PKS, Vassilev PM (1985) Block of “creep currents” in single frog atrial cells by vesicular Na-Ca exchange inhibitors. J Physiol 369:89

    Google Scholar 

  • Holland R, Woodgett J, Hardie D (1983) Evidence that amiloride antagonises insulin-stimulated protein phosphorylation by inhibiting protein kinase activity. Fed Eur Biochem Soc 154:269–273

    Article  CAS  Google Scholar 

  • Hume JR, Kaczorowski GJ, Siegl PKS (1985) Lanthanum and 3′,4′-dichlorobenzamil block “creep currents” in single atrial myocytes. Circulation 72-III:230

    Google Scholar 

  • Jurkowitz MS, Altschuld RA, Brierley GP, Cragoe EJ Jr (1983) Inhibition of Na-dependent Ca efflux from heart mitochondria by amiloride analogs. FEBS Lett 162:262–265

    Article  PubMed  CAS  Google Scholar 

  • Kaczorowski GJ (1985) Sodium-calcium exchange and calcium homeostasis in excitable tissue. Annu Rep Med Chem 20:215–226

    Article  CAS  Google Scholar 

  • Kaczorowski GJ, Costello L, Dethmers J, Trumble MJ, Vandlen RL (1984) Mechanism of Ca transport in plasma membrane vesicles prepared from cultured pituitary cells. J Biol Chem 259:9395–9403

    PubMed  CAS  Google Scholar 

  • Kaczorowski GJ, Barros F, Dethmers JK, Trumble MJ (1985) Inhibition of Na-Ca exchange in pituitary plasma membrane vesicles by analogues of amiloride. Biochemistry 24:1394–1403

    Article  PubMed  CAS  Google Scholar 

  • Kadoma M, Froehlich J, Reeves JP, Sutko J (1982) Kinetics of sodium ion induced calcium ion release in calcium ion loaded cardiac sarcolemmal vesicles: determination of initial velocities by stopped flow spectrophotometry. Biochemistry 21:1914–1918

    Article  PubMed  CAS  Google Scholar 

  • Langer GA (1982) Sodium-calcium exchange in the heart. Annu Rev Physiol 44:435–449

    Article  PubMed  CAS  Google Scholar 

  • Langer GA (1984) Calcium at the sarcolemma. J Mol Cell Cardiol 16:147–153

    Article  PubMed  CAS  Google Scholar 

  • Lazdunski M, Frelin C, Vigne P (1985) The sodium-hydrogen exchange system in cardiac cells: its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. J Mol Cell Cardiol 17:1029–1042

    Article  PubMed  CAS  Google Scholar 

  • Lee CO, Dagostino M (1982) Effect of strophanthidin on intracellular Na ion activity in twitch tension of constantly driven canine cardiac Purkinje fibers. Biophys J 40:185–198

    Article  PubMed  CAS  Google Scholar 

  • Lubin M, Cahn F, Coutermarsh B (1982) Amiloride, protein synthesis, and activation of quiescent cells. J Cell Physiol 113:247–251

    Article  PubMed  CAS  Google Scholar 

  • Luciani S, Floreani M (1985) Na-Ca exchange as a target for inotropic drugs. Trends Pharmacol Sci 6:316

    Article  CAS  Google Scholar 

  • Mallov S (1983) Effect of amrinone on sodium-calcium exchange in cardiac sarcolemmal vesicles. Res Commun Chem Pathol Pharmacol 41:197–210

    PubMed  CAS  Google Scholar 

  • Matlib MA, Lee S-W, Depover A, Schwartz A (1983) A specific inhibitory action of certain benzothiazepines and benzodiazepines on the sodium-calcium exchange process of heart and brain mitochondria. Eur J Pharmacol 89:327–328

    Article  PubMed  CAS  Google Scholar 

  • Matlib MA, Doane JD, Sperelakis N, Riccippo-Neto F (1985) Clonazepam and diltiazem both inhibit sodium-calcium exchange of mitochondria but only diltiazem inhibits the slow action potentials of cardiac muscles. Biochem Biophys Res Commun 128:290–296

    Article  PubMed  CAS  Google Scholar 

  • Mentrard D, Vassort G, Fischmeister R (1984) Changes in external Na induce a membrane current related to the Na-Ca exchange in cesium-loaded frog heart cells. J Gen Physiol 84:201–220

    Article  PubMed  CAS  Google Scholar 

  • Michaelis ML, Michaelis EK (1983) Alcohol and local anesthetic effects on Na-dependent Ca fluxes in brain synaptic membrane vesicles. Biochem Pharmacol 32:963–969

    Article  PubMed  CAS  Google Scholar 

  • Michalak M, Quackenbush EJ, Letarte M (1986) Inhibition of Na-Ca exchanger activity in cardiac and skeletal muscle sarcolemmal vesicles by monoclonal antibody 44D7. J Biol Chem 261:92–95

    PubMed  CAS  Google Scholar 

  • Mullins LJ (1979) The generation of electric currents in cardiac fibers by Na-Ca exchange. Am J Physiol 236:C103–C110

    PubMed  CAS  Google Scholar 

  • Mullins LJ (1981) Ion transport in the heart. Raven, New York

    Google Scholar 

  • Nayler WG, Perry SE, Elz JS, Daly MJ (1984) Calcium, sodium, and the calcium paradox. Circ Res 55:227–237

    PubMed  CAS  Google Scholar 

  • Noble D (1984) The surprising heart: a review of recent progress in cardiac electrophysiology. J Physiol 353:1–50

    PubMed  CAS  Google Scholar 

  • Orchard CH, Eisner DA, Allen DG (1983) Oscillations of intracellular Ca in mammalian cardiac muscle. Nature 304:735–738

    Article  PubMed  CAS  Google Scholar 

  • Philipson KD (1984) Interaction of charged amphiphiles with Na-Ca exchange in cardiac sarcolemmal vesicles. J Biol Chem 259:13999–14002

    PubMed  CAS  Google Scholar 

  • Philipson KD (1985 a) Sodium-calcium exchange in plasma membrane vesicles. Annu Rev Physiol 47:561–571

    Article  PubMed  CAS  Google Scholar 

  • Philipson KD (1985 b) Symmetry properties of the Na-Ca exchange mechanism in cardiac sarcolemmal vesicles. Biochim Biophys Acta 821:367–376

    Article  PubMed  CAS  Google Scholar 

  • Philipson KD, Nishimoto AY (1982 a) Na-Ca exchange in inside-out cardiac sarcolemmal vesicles. J Biol Chem 257:5111–5117

    PubMed  CAS  Google Scholar 

  • Philipson KD, Nishimoto AY (1982 b) Stimulation of Na-Ca exchange in cardiac sarcolemmal vesicles by proteinase pretreatment. Am J Physiol 243:C191-C195

    PubMed  CAS  Google Scholar 

  • Philipson KD, Nishimoto AY (1984) Stimulation of Na-Ca exchange in cardiac sarcolemmal vesicles by phospholipase D. J Biol Chem 259:16–19

    PubMed  CAS  Google Scholar 

  • Philipson KD, Ward R (1985) Effects of fatty-acids on sodium-calcium exchange and calcium permeability of cardiac sarcolemmal vesicles. J Biol Chem 260:9666–9671

    PubMed  CAS  Google Scholar 

  • Philipson KD, Frank JS, Nishimoto AY (1983) Effects of phospholipase C on the Na-Ca exchange and Ca permeability of cardiac sarcolemmal vesicles. J Biol Chem 258:5905–5910

    PubMed  CAS  Google Scholar 

  • Philipson KD, Langer GA, Rich TL (1985) Regulation of myocardial contractility and sarcolemmal Ca binding and transport by charged amphiphiles. Am J Physiol 248:H147–H150

    PubMed  CAS  Google Scholar 

  • Posillico JT, Srikant S, Brown EM, Eisanbarth GS (1985) The 4F2 cell surface protein modulates intracellular calcium. Clin Res 33:385A

    Google Scholar 

  • Pousti A, Khoyi MA (1979) Effect of amiloride on isolated guinea-pig atrium. Arch Int Pharmacodyn 242:222–229

    PubMed  CAS  Google Scholar 

  • Quackenbush EJ, Gougos A, Baumal R, Letarte M (1986) Differential localization within human kidney of five membrane proteins expressed on acute lymphoblastic leukemia cells. J Immunol 136:118–124

    PubMed  CAS  Google Scholar 

  • Ralph RK, Smart J, Wojcik SJ, McQuillan J (1982) Inhibition of mouse mastocytoma protein kinases by amiloride. Biochem Biophys Res Commun 104:1054–1059

    Article  PubMed  CAS  Google Scholar 

  • Reeves JP (1985) The sarcolemmal sodium-calcium exchange system. Curr Top Membr Trans 25:77–127

    CAS  Google Scholar 

  • Reeves JP, Hale CC (1984) The stoichiometry of the cardiac sodium-calcium exchange system. J Biol Chem 259:7733–7739

    PubMed  CAS  Google Scholar 

  • Reeves JP, Sutko JL (1979) Sodium-calcium ion exchange in cardiac membrane vesicles. Proc Natl Acad Sci USA 76:590–594

    Article  PubMed  CAS  Google Scholar 

  • Reeves JP, Sutko JL (1980) Sodium-calcium exchange activity generates a current in cardiac membrane vesicles. Science 208:1461–1464

    Article  PubMed  CAS  Google Scholar 

  • Reeves JP, Sutko JL (1983) Competitive interactions of sodium and calcium with the sodium-calcium exchange system of cardiac sarcolemmal vesicles. J Biol Chem 258:3178–3182

    PubMed  CAS  Google Scholar 

  • Reeves JP, Bailey CA, Hale CC (1986) Redox modification of sodium-calcium exchange activity in cardiac sarcolemmal vesicles. J Biol Chem 261:4948–4955

    PubMed  CAS  Google Scholar 

  • Reuter H (1982) Na-Ca countertransport in cardiac muscle. In: Martonosi AN (ed) Membranes and transport. Plenum, New York, p 623

    Google Scholar 

  • Reuter H, Seitz N (1968) The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol 195:451–470

    PubMed  CAS  Google Scholar 

  • Schellenberg GD, Anderson L, Swanson PD (1983) Inhibition of Na-Ca exchange in rat brain by amiloride. Mol Pharmacol 24:251–258

    PubMed  CAS  Google Scholar 

  • Schellenberg GD, Anderson L, Cragoe EJ Jr, Swanson PD (1985 a) Inhibition of synaptosomal membrane Na-Ca exchange transport by amiloride and amiloride analogues. Mol Pharmacol 27:537–543

    PubMed  CAS  Google Scholar 

  • Schellenberg GD, Anderson L, Cragoe EJ Jr, Swanson PD (1985 b) Inhibition of brain mitochondrial Ca transport by amiloride analogues. Cell Calcium 6:431–447

    Article  PubMed  CAS  Google Scholar 

  • Sheu S-S, Fozzard HA (1982) Transmembrane Na and Ca electrochemical gradients in cardiac muscle and their relationship to force development. J Gen Physiol 80:325–351

    Article  PubMed  CAS  Google Scholar 

  • Siegl PKS, Kaczorowski GJ, Trumble MJ, Cragoe EJ Jr (1983) Inhibition of Na-Ca exchange in guinea pig heart sarcolemmal vesicles and mechanical response by isolated atria and papillary muscle to 3,4-dichlorobenzamil (DCB). J Mol Cell Cardiol 14 [Suppl 1]:363 (abstract)

    Google Scholar 

  • Siegl PKS, Cragoe EJ, Trumble MJ, Kaczorowski GJ (1984) Inhibition of Na-Ca exchange in membrane vesicle and papillary muscle preparations from guinea pig heart by analogs of amiloride. Proc Natl Acad Sci USA 81:3238–3242

    Article  PubMed  CAS  Google Scholar 

  • Slaughter RS, Sutko JL, Reeves JP (1983) Equilibrium calcium-calcium exchange in cardiac sarcolemmal vesicles. J Biol Chem 258:3183–3190

    PubMed  CAS  Google Scholar 

  • Slaughter R, de la Pena P, Reeves JP, Cragoe E, Kaczorowski GJ (1984) Amiloride analogs, non-competitive inhibitors of sodium-calcium exchange in cardiac sarcolemmal vesicles. Biophys J 45:81a

    Article  Google Scholar 

  • Smith RL, Macara IG, Levenson R, Housman D, Cantley L (1982) Evidence that a Na-Ca antiport system regulates murine erythroleukemia cell differentiation. J Biol Chem 257:773–780

    PubMed  CAS  Google Scholar 

  • Soltoff SP, Mandel LJ (1983) Amiloride directly inhibits the Na,K-ATPase activity of rabbit kidney proximal tubules. Science 220:957–959

    Article  PubMed  CAS  Google Scholar 

  • Sordahl LA, LaBelle EF, Rex KA (1984) Amiloride and diltiazem inhibition of microsomal and mitochondrial Na and Ca transport. Am J Physiol 246:C172–C176

    PubMed  CAS  Google Scholar 

  • Suleiman MS, Hider RC (1985) The influence of harmaline on the movements of sodium ions in smooth muscle of the guinea pig ileum. Mol Cell Biochem 67:145–150

    Article  PubMed  CAS  Google Scholar 

  • Takeo S, Adachi K, Sakanashi M (1985) A possible action of nicardipine on the cardiac sarcolemmal Na-Ca exchange. Biochem Pharmacol 34:2303–2308

    Article  PubMed  CAS  Google Scholar 

  • Trosper TL, Philipson KD (1983) Effects of divalent and trivalent cations on Na-Ca exchange in cardiac sarcolemmal vesicles. Biochim Biophys Acta 731:63–68

    Article  PubMed  CAS  Google Scholar 

  • Vaghy PL, Johnson JD, Matlib MA, Wang T, Schwartz A (1982) Selective inhibition of Na-induced Ca release from heart mitochondria by diltiazem and certain other Ca antagonist drugs. J Biol Chem 257:6000–6002

    PubMed  CAS  Google Scholar 

  • Wier WG, Kort AA, Stern MD, Lakatta EG, Marban E (1983) Cellular calcium fluctuations in mammalian heart: direct evidence from noise analysis of aequorin signals in Purkinje fibers. Proc Natl Acad Sci USA 80:7367–7371

    Article  PubMed  CAS  Google Scholar 

  • Yamashita S, Motomura S, Taira N (1981) Cardiac effects of amiloride in the dog. J Cardiovasc Pharmacol 3:704–715

    Article  PubMed  CAS  Google Scholar 

  • Zhuang Y-X, Cragoe EJ Jr, Shaikewitz T, Glaser L, Cassel D (1984) Characterization of potent Na-H exchange inhibitors from the amiloride series in A431 cells. Biochemistry 23:4481–4488

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaczorowski, G.J., Garcia, M.L., King, V.F., Slaughter, R.S. (1988). Development of Inhibitors of Sodium, Calcium Exchange. In: Baker, P.F. (eds) Calcium in Drug Actions. Handbook of Experimental Pharmacology, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71806-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71806-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71808-3

  • Online ISBN: 978-3-642-71806-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics