Skip to main content

Drug Effects on Plasma Membrane Calcium Transport

  • Chapter
Calcium in Drug Actions

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 83))

Abstract

In this chapter we have concentrated mainly on the question of the effects of drugs on the plasma membrane Ca2+ pump. This is not an exhaustive review. We have reviewed mainly the literature files in our laboratory, concentrating on papers published in 1983, 1984, and 1985. There are a number of reviews in related areas, including calmodulin (CaM) (Tomlinson et al. 1984) and its drug interaction (Vincenzi 1981; Weiss et al. 1985; Roufogalis et al. 1983; Roufogalis 1985), regulation of calcium in cells (Carafoli 1985), the effects of drugs on membrane fluidity (Goldstein 1984), and reviews on plasma membrane (PM) Ca2+ pump ATPase (Itano and Penniston 1985) and Ca2+ transport (Carafoli 1984 a, b, c, d, 1985; Schatzmann 1983, 1985). Because relatively more is known about the Ca2+ pump in human red blood cells (RBCs) than in other types and species of cells, most of our concern has been with this type of cell. Ca2+ transport in the heart has been reviewed by Langer (1984) and Carafoli (1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agre P, Virshup D, Bennett V (1984) Bepridil and cetiedil. Vasodilators which inhibit Ca2+ -dependent calmodulin interactions with erythrocyte membranes. J Clin Invest 74:812–820

    Article  PubMed  CAS  Google Scholar 

  • Akerman KEO, Wikstrom MKF (1979) (Ca2++Mg2+)-stimulated ATPase activity of rabbit myometrium plasma membrane is blocked by oxytocin. FEBS Lett 97:283–287

    Article  PubMed  CAS  Google Scholar 

  • Barnette SM, Weiss B (1982) Interaction of beta-endorphin and other opioid peptides with calmodulin. Mol Pharmacol 21:86–91

    Google Scholar 

  • Barnette MS, Daly R, Weiss B (1983) Inhibition of calmodulin activity by insect venom peptides. BiocheM Pharmacol 32:2929–2933

    Article  PubMed  CAS  Google Scholar 

  • Barzilai A, Rahamimoff H (1983) Inhibition of Ca2+-transport ATPase from synaptosomal vesicles by flavonoids. Biochim Biophys Acta 730:245–254

    Article  PubMed  CAS  Google Scholar 

  • BenaiM G, Zurini M, Carafoli E (1984) Different conformational states of the purified Ca2+-ATPase of the erythrocyte plasma membrane revealed by controlled trypsin proteolysis. J Biol CheM 259:8471–8477

    Google Scholar 

  • Benatti U, Guida L, Forteleoni G, Meloni T, De Flora A (1985) Impairment of the calcium pump of human erythrocytes by divicine. Arch Biochem Biophys 239:334–341

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal DK, Takio K, Edelman AM, Charbonneau H, Titani K, Walsh KA, Krebs EG (1985) Identification of the calmodulin-binding domain of skeletal muscle myosin light chain kinase. Proc Natl Acad Sci USA 82:3187–3191

    Article  PubMed  CAS  Google Scholar 

  • Bogin E, Marrsy SG, Levi J, Djaldeti M, Bristol G, Smith J (1982) Effect of parathyroid hormone on osmotic fragility of human erythrocyte. J Clin Invest 69:1017–1025

    Article  PubMed  CAS  Google Scholar 

  • Bostrom S-L, Ljung B, Mardh S, Forsen S, Thulin E (1981) Interaction of the antihypertensive drug felodipine with calmodulin. Nature 292:777–778

    Article  PubMed  CAS  Google Scholar 

  • Brautbar N, Chakrabarty J, Coats J, Massry SG (1985) Calcium, parathyroid hormone and phospholipid turnover of human red blood cells. Mineral Electrolyte Metab 11:111–116

    CAS  Google Scholar 

  • Carafoli E (1984 a) Molecular, mechanistic, and functional aspects of the plasma membrane calcium pump. In: Bronner F, Peterlik M (eds) Epithelial calcium and phosphate transport: molecular and cellular aspects, vol 168. Liss, New York, p 13

    Google Scholar 

  • Carafoli E (1984 b) Plasma membrane Ca2+ transport, and Ca2+ handling by intracellular stores: an integrated picture with emphasis on regulation. In: Donowitz M, Sharp GWG (eds) Mechanisms of intestinal electrolyte transport and regulation by calcium. Liss, New York, p 121

    Google Scholar 

  • Carafoli E (1984c) Calmodulin-sensitive calcium-pumping ATPase of plasma membranes: isolation, reconstitution, and regulation. Fed Proc 43:3005–3010

    PubMed  CAS  Google Scholar 

  • Carafoli E (1984d) Membrane transport in the messenger function of calcium. In: Ovchinnikov YA (ed) Progress in bioorganic chemistry and molecular biology. Elsevier, New York, p 233

    Google Scholar 

  • Carafoli E (1985) The homeostasis of calcium in heart cells. J Mol Cell Cardiol 17:203–212

    Article  PubMed  CAS  Google Scholar 

  • Cavieres JD (1984) Calmodulin and the target size of the (Ca2+ +Mg2+)-ATPase of human red-cell ghosts. Biochim Biophys Acta 771:241–244

    Article  PubMed  CAS  Google Scholar 

  • Colombani PM, Robb A, Hess AD (1985) Cyclosporin A binding to calmodulin: a possible site of action on T lymphocytes. Science 228:337–339

    Article  PubMed  CAS  Google Scholar 

  • Comte M, Maulet Y, Cox JA (1983) Ca2+-dependent high-affinity complex formation between calmodulin and melittin. Biochem J 209:269–272

    PubMed  CAS  Google Scholar 

  • Condrea E (1984) Membrane-active polypeptides from snake venom: cardiotoxins and haemocytotoxins. Experientia 30:121–129

    Article  Google Scholar 

  • Cox JA, Comte M, Fitton JE, DeGrado WF (1985) The interaction of calmodulin with am-phiphilic peptides. J Biol Chem 260:2527–2534

    PubMed  CAS  Google Scholar 

  • Davis FB, Davis PJ, Blas SD (1983 a) Role of calmodulin in thyroid hormone stimulation in vitro of human erythrocyte Ca2+-ATPase activity. J Clin Invest 71:579–586

    Article  PubMed  CAS  Google Scholar 

  • Davis FB, Middleton E, Davis PJ, Blas SD (1983 b) Inhibition by quercetin of thyroid hormone stimulation in vitro of human red blood cell Ca2+-ATPase activity. Cell Calcium 4:71–81

    Article  PubMed  CAS  Google Scholar 

  • Davis PJ, Davis FB (1985) Thyroid hormone and calmodulin. In: Hidaka H, Hartshorne DJ (eds) Calmodulin antagonists and cellular physiology. Academic, New York, p 185

    Google Scholar 

  • Deliconstantinos G (1983) Phenobarbital modulates the (Na+,K+)-stimulated ATPase and Ca2+-stimulated ATPase activities by increasing the bilayer fluidity of dog brain synaptosomal plasma membranes. Neurochem Res 8:1143–1152

    Article  PubMed  CAS  Google Scholar 

  • DiJulio D, Vincenzi FF (1986) Evaluation of trifluoperazine and compound 48/80 as selective antagonists of calmodulin activation of the Ca2+ pump ATPase. Proc West Pharmacol Soc 29:445–446

    CAS  Google Scholar 

  • Emelyanenko EI, Shakhparonov MI, Modyanov NM (1985) Limited proteolysis of human erythrocyte Ca2+-ATPase in membrane-bound form. Identification of calmodulin-binding fragments. Biochem Biophys Res Commun 126:214–219

    Article  PubMed  CAS  Google Scholar 

  • Farrance ML, Vincenzi FF (1977) Enhancement of (Ca2+ +Mg2+)-ATPase activity of human erythrocyte membranes by hemolysis in isosmotic imidazole buffer. I. General properties of variously prepared membranes and the mechanism of the isosmotic imidazole effect. Biochim Biophys Acta 471:49–58

    Article  PubMed  CAS  Google Scholar 

  • Foder B, Skibsted U, Scharff O (1984) Effect of trifluoperazine, compound 48/80, TMB-8 and verapamil on ionophore A23187 mediated calcium uptake in ATP depleted human red cells. Cell Calcium 5:441–450

    Article  PubMed  CAS  Google Scholar 

  • Fourie AM, Meltzer S, Berman MC, Louw AI (1983) The effect of cardiotoxin on (Ca2+ + Mg2+)-ATPase of the erythrocyte and sarcoplasmic reticulum. Biochem Int 6:581–591

    PubMed  CAS  Google Scholar 

  • Garrett KM, Ross DH (1983) Effects of in vivo ethanol administration on Ca2+/Mg2 + ATPase and ATP-dependent Ca2+ uptake activity in synaptosomal membranes. Neurochem Res 8:1013–1028

    Article  PubMed  CAS  Google Scholar 

  • Gietzen K, Adamczyk-Engelmann P, Wuthrich A, Konstantinova A, Bader H (1983) Compound 48/80 is a selective and powerful inhibitor of calmodulin-regulated functions. Biochim Biophys Acta 736:109–118

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DB (1984) The effects of drugs on membrane fluidity. Annu Rev Pharmacol Toxicol 24:43–64

    Article  PubMed  CAS  Google Scholar 

  • Graf E, Verma AK, Gorski JP, Lopaschuk G, Niggli V, Zurini M, Carafoli E, Penniston JT (1982) Molecular properties of calcium-pumping ATPase from human erythrocytes. Biochemistry 21:4511–4516

    Article  PubMed  CAS  Google Scholar 

  • Guerini D, Krebs J, Carafoli E (1984) Stimulation of the purified erythrocyte Ca2+-ATPase by tryptic fragments of calmodulin. J Biol Chem 259:15172–15177

    PubMed  CAS  Google Scholar 

  • Hinds TR, Andreasen TJ (1981) Photochemical cross-linking of azidocalmodulin to the (Ca2+ + Mg2+)-ATPase of the erythrocyte membrane. J Biol Chem 256:7877–7882

    PubMed  CAS  Google Scholar 

  • Hinds TR, Vincenzi FF (1986) Evidence for a calmodulin-activated Ca2+ pump ATPase in dog erythrocytes (42290). Proc Soc Exp Biol Med 181:542–549

    PubMed  CAS  Google Scholar 

  • Hunt WG, Willis RJ (1985) Calcium exposure required for full expression of injury in the calcium paradox. Biochem Biophys Res Commun 126:901–904

    Article  PubMed  CAS  Google Scholar 

  • Inagaki M, Hidaka H (1984) Two types of calmodulin antagonists: a structurally related interaction. Pharmacology 29:75–84

    Article  PubMed  CAS  Google Scholar 

  • Inagaki M, Tanaka T, Sasaki Y, Hidaka H (1985) Calcium-dependent interactions of an ionophore A23187 with calmodulin. Biochem Biophys Res Commun 130:200–206

    Article  PubMed  CAS  Google Scholar 

  • Itano T, Penniston JT (1985) Ca2+-pumping ATPase of plasma membranes. In: Hidaka H, Hartshorne DJ (eds) Calmodulin antagonists and cellular physiology. Academic, New York, p 335

    Google Scholar 

  • Kotagal N, Colca JR, McDaniel ML (1983) Activation of an islet cell plasma membrane (Ca2+ +Mg2+)-ATPase by calmodulin and Ca-EGTA. J Biol Chem 258:4808–4813

    PubMed  CAS  Google Scholar 

  • Lange Y (1984) The dynamics of erythrocyte membrane cholesterol. In: Kruckeberg WC, Eaton JW, Brewer GJ (eds) Erythrocyte membranes: recent clinical and experimental advances, vol 3. Liss, New York, p 137

    Google Scholar 

  • Langer GA (1984) Calcium at the sarcolemma. J Mol Cell Cardiol 16:147–153

    Article  PubMed  CAS  Google Scholar 

  • LaPorte DC, Wierman BM, Storm DR (1980) Calcium-induced exposure of a hydrophobic surface on calmodulin. Biochemistry 19:3814–3819

    Article  PubMed  CAS  Google Scholar 

  • Larsen FL, Katz S, Roufogalis BD, Brooks DE (1981) Physiological shear stresses enhance the Ca2+-permeability of human erythrocytes. Nature 294:667–668

    Article  PubMed  CAS  Google Scholar 

  • Leida MN, Mahoney JR, Eaton JR (1981) Intraerythrocytic plasmodial calcium metabolism. Biochem Biophys Res Commun 103:402–406

    Article  PubMed  CAS  Google Scholar 

  • Levin RM, Weiss B (1977) Binding of trifluoperazine to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. Mol Pharmacol 13:690–697

    PubMed  CAS  Google Scholar 

  • Levine SN, Hollier B (1983) Aprindine inhibits calmodulin-stimulated phosphodiesterase and Ca-ATPase activities. J Cardiovasc Pharmacol 5:151–156

    Article  PubMed  CAS  Google Scholar 

  • Lew VL, Tsien RY, Miner C, Bookchin RM (1982) Physiological [Ca2+]i level and pump-leak turnover in intact red cells measured using an incorporated Ca chelator. Nature 298:478–481

    Article  PubMed  CAS  Google Scholar 

  • Locher R, Neyses L, Stimpel M, Kuffer B, Vetter W (1984) The cholesterol content of the human erythrocyte influences calcium influx through the channel. Biochem Biophys Res Commun 124:822–828

    Article  PubMed  CAS  Google Scholar 

  • Lorand L, Michalska M (1985) Altered response of stored red blood cells to Ca2+ stress. Blood 65:1025–1027

    PubMed  CAS  Google Scholar 

  • Lotersztajn S, Epand RM, Mallat A, Pecker F (1984) Inhibition by glucagon of the calcium pump in liver plasma membranes. J Biol Chem 259:8195–8201

    PubMed  CAS  Google Scholar 

  • Meltzer HL, Kassir S (1983 b) Inhibition of calmodulin-activated Ca2+-ATPase by propa-nolol and nadolol. Biochim Biophys Acta 755:452–456

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen RB, Geller E, Van Doren E, Asher CR (1984) Ca2+ metabolism of plasmodia-infected erythrocytes. In: Eaton JW, Brewer GJ (eds) Malaria and the red cell, vol 155. Liss, New York, p 25

    Google Scholar 

  • Minocherhomjee A-E-VM, Roufogalis BD (1984) Antagonism of calmodulin and phosphodiesterase by nifedipine and related calcium entry blockers. Cell Calcium 5:57–63

    Article  PubMed  CAS  Google Scholar 

  • Minocherhomjee AM, Beauregard B, Potier M, Roufogalis BD (1983) The molecular weight of the calcium-transport-ATPase of the human red blood cell determined by radiation inactivation. Biochem Biophys Res Commun 116:895–900

    Article  PubMed  CAS  Google Scholar 

  • Moore M, Thor H, Moore G, Nelson S, Moldeus P, Orrenius S (1985) The toxicity of acetaminophen and N-acetyl-p-benzoquinone imine in isolated hepatocytes is associated with thiol depletion and increased cytosolic Ca2+. J Biol Chem 260:13035–13040

    PubMed  CAS  Google Scholar 

  • Mualem S, Karlish SJD (1983) Catalytic and regulatory ATP-binding sites of the red cell Ca2+ pump studied by irreversible modification with fluorescein isothiocyanate. J Biol Chem 258:169–175

    Google Scholar 

  • Nelson DR, Hanahan DJ (1985) Phospholipid and detergent effects on (Ca2++ Mg2+) ATPase purified from human erythrocytes. Arch Biochem Biophys 236:720–730

    Article  PubMed  CAS  Google Scholar 

  • Nelson GA, Andrews ML, Karnovsky MJ (1983) Control of erythrocyte shape by calmodulin. J Cell Biol 96:730–735

    Article  PubMed  CAS  Google Scholar 

  • Niggli V, Penniston JT, Carafoli E (1979) Purification of the (Ca2+ + Mg2+) ATPase from human erythrocyte membranes using a calmodulin affinity column. J Biol Chem 254:9955–9958

    PubMed  CAS  Google Scholar 

  • Penniston JT, Graf E, Niggli V, Verma AK, Carafoli E (1980) The plasma membrane calcium ATPase. In: Siegel FL, Carafoli E, Kretsinger DH, Maclennan DH, Wasserman RH (eds) Calcium-binding proteins: structure and function. Elsevier, New York, pp 23–30

    Google Scholar 

  • Pine RW, Vincenzi FF, Carrico CJ (1983) Apparent inhibition of the plasma membrane Ca2+ pump by oleic acid. J Trauma 23:366–370

    Article  PubMed  CAS  Google Scholar 

  • Plishker GA (1984) Phenothiazine inhibition of calmodulin stimulates calcium-dependent potassium efflux in human red blood cells. Cell Calcium 5:177–185

    Article  PubMed  CAS  Google Scholar 

  • Prozialeck WC (1984) Interaction of quaternary phenothiazine salts with calmodulin. J Pharmacol Exp Ther 231:473–479

    PubMed  CAS  Google Scholar 

  • Raess BU, Vincenzi FF (1980) A semi-automated method for determination of multiple membrane ATPase activities. J Pharmacol Meth 4:273–283

    Article  CAS  Google Scholar 

  • Raess BU, Record DM, Tunnicliff G (1985) Interaction of phenylglyoxal with the human erythrocyte (Ca2+ + Mg2+)-ATPase. Mol Pharmacol 27:444–450

    PubMed  CAS  Google Scholar 

  • Rainteau D, Wolf C, Bereziat G, Polonovski J (1984) Binding of a spin-labelled chlorpro-mazine analogue to calmodulin. Biochem J 221:659–663

    PubMed  CAS  Google Scholar 

  • Resink TJ, Tkachuk VA, Erne P, Buhler FR (1986) Platelet membrane calmodulin-stimu-lated calcium-adenosine triphosphatase. Altered activity in essential hypertension. Hypertension 8:159–166

    PubMed  CAS  Google Scholar 

  • Ronner P, Gazzotti P, Carafoli E (1977) A lipid requirement for the (Ca2+ +Mg2+-activated ATPase of erythrocyte membranes. Arch Biochem Biophys 179:578–583

    Article  PubMed  CAS  Google Scholar 

  • Ross DH, Shreeve SM, Hamilton MG (1985) Activation of central muscarinic receptors inhibit Ca2+/Mg2+ ATPase and ATP-dependent Ca2+ transport in synaptic membranes. Brain Res 329:39–47

    Article  PubMed  CAS  Google Scholar 

  • Roufogalis BD (1982) Specificity of trifluoperazine and related phenothiazines for calcium-binding proteins. In: Cheung WY (ed) Calcium and cell function, vol III. Academic, New York, p 129

    Google Scholar 

  • Roufogalis BD (1985) Calmodulin antagonism. In: Marme D (ed) Calcium and cell physiology. Springer, Berlin Heidelberg New York Tokyo, p 148

    Chapter  Google Scholar 

  • Roufogalis BD, Minocherhomjee A-E-VM, Al-Jobore A (1983) Pharmacological antagonism of calmodulin. Can J Biochem Cell Biol 61:927–933

    Article  PubMed  CAS  Google Scholar 

  • Roufogalis BD, Elliott CT, Ralston GB (1984) Characterization of a (Ca2+ +Mg2+)ATPase activator bound to human erythrocyte membranes. Cell Calcium 5:77–88

    Article  PubMed  CAS  Google Scholar 

  • Saltissi D, Carter GD (1985) Association of secondary hyperparathyroidism with red cell survival in chronic haemodialysis patients. Clin Sci 68:29–33

    PubMed  CAS  Google Scholar 

  • Schanne FAX, Kane AB, Young EE, Farber JL (1979) Calcium dependence of toxic cell death: a final common pathway. Science 206:700–702

    Article  PubMed  CAS  Google Scholar 

  • Schatzmann HJ (1983) The red calcium pump. Annu Rev Physiol 45:303–312

    Article  PubMed  CAS  Google Scholar 

  • Schatzmann HJ (1985) Calcium extrusion across the plasma membrane by the calcium-pump and the Ca2+-Na+ exchange system. In: Marme D (ed) Calcium and cell physiology. Springer, Berlin Heidelberg New York Tokyo, p 18

    Chapter  Google Scholar 

  • Schatzmann HJ, Vincenzi FF (1969) Calcium movements across the membrane of human red cells. J Physiol 201:369–395

    PubMed  CAS  Google Scholar 

  • Schlondorff D, Satriano J (1985) Interactions with calmodulin: potential mechanism for some inhibitory actions of tetracyclines and calcium channel blockers. Biochem Pharmacol 34:3391–3393

    Article  PubMed  CAS  Google Scholar 

  • Schmidt JW, Hinds TR, Vincenzi FF (1985) On the failure of calmodulin to activate Ca2+ pump ATPase of dog red blood cells. Comp Biochem Physiol 82A:601–607

    Article  CAS  Google Scholar 

  • Shinitzky M (1978) An efficient method for modulation of cholesterol level in cell membranes. FEBS Lett 85:317–320

    Article  PubMed  CAS  Google Scholar 

  • Soloff MS, Sweet P (1982) Oxytocin inhibition of (Ca2+ +Mg2+)-ATPase activity in rat myometrial plasma membranes. J Biol Chem 257:10687–10693

    PubMed  CAS  Google Scholar 

  • Steiner B, Luscher EF (1985) Evidence that the platelet plasma membrane does not contain a (Ca2+ +Mg2+)-dependent ATPase. Biochim Biophys Acta 818:299–309

    Article  PubMed  CAS  Google Scholar 

  • Steiner RF, Marshall L, Needleman D (1986) The interaction of melittin with calmodulin and its tryptic fragments. Arch Biochem Biophys 246:286–300

    Article  PubMed  CAS  Google Scholar 

  • Tokumura A, Mostafa MH, Nelson DR, Hanahan DJ (1985) Stimulation of (Ca2+ + Mg2+)-ATPase activity in human erythrocyte membranes by synthetic lysophospha-tidic acids and lysophosphatidylcholines. Effects of chain length and degree of unsat-uration of the fatty acid groups. Biochim Biophys Acta 812:568–574

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson S, Macneil S, Walker SW, Ollis CA, Merritt JE, Brown BL (1984) Calmodulin and cell function. Clin Sci 66:497–508

    PubMed  CAS  Google Scholar 

  • Varecka L, Carafoli E (1982) Vanadate-induced movements of Ca2+ and K+ in human red blood cells. J Biol Chem 257:7414–7421

    PubMed  CAS  Google Scholar 

  • Vincenzi FF (1981) Calmodulin pharmacology. Cell Calcium 2:387–409

    Article  PubMed  CAS  Google Scholar 

  • Vincenzi FF (1982) Pharmacological modification of the Ca2+-pump ATPase activity of human erythrocytes. Ann NY Acad Sci 402:368–380

    Article  PubMed  CAS  Google Scholar 

  • Vincenzi FF, Cambaren JJ (1985) Apparent ionophoric effects of red blood cell deformation. In: Eaton JW, Konzen DL, White JG (eds) Cellular and molecular aspects of aging. The red cell as a model. Liss, New York, p 213

    Google Scholar 

  • Vincenzi FF, Hinds TR (1980) Calmodulin and plasma membrane calcium transport. In: Cheung WY (ed) Calcium and cell function, vol I. Academic, New York, p 128

    Google Scholar 

  • Vincenzi FF, Adunyah ES, Niggli V, Carafoli E (1982) Purified red blood cell Ca2+-pump ATPase: evidence for direct inhibition by presumed anti-calmodulin drugs in the absence of calmodulin. Cell Calcium 3:545–559

    Article  PubMed  CAS  Google Scholar 

  • Watkins WM (1974) Blood-group substances: their nature and genetics. In: Surgenor DM (ed) The red blood cell, 2nd ed. Academic, New York, pp 293–260

    Google Scholar 

  • Weiss B, Sellinger-Barnette M, Winkler JD, Schechter LE, Prozialeck WC (1985) Calmodulin antagonists: structure-activity relationships. In: Hidaka H, Hartshorne DJ (eds) Calmodulin antagonists and cellular physiology. Academic, New York, p 45

    Google Scholar 

  • Wolff DJ, Brostrom CO (1976) Calcium-dependent cyclic nucleotide phosphodiesterase from brain identification of phospholipids as calcium-independent activators. Arch Biochem Biophys 173:720–731

    Article  PubMed  CAS  Google Scholar 

  • Wulfroth P, Petzelt C (1985) The so-called anticalmodulins fluphenazine, calmidazolium, and compound 48/80 inhibit the Ca2+-transport system of the endoplasmic reticulum. Cell Calcium 6:295–310

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki Y, Way EL (1983) Possible inhibition of Ca++ pump of rat erythrocyte ghosts by opioid K agonists. Life Sci 33:723–726

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki Y, Way EL (1985) Inhibition of Ca++-ATPase of rat erythrocyte membranes by K-opioid agonists. Neuropeptides 5:359–362

    Article  PubMed  CAS  Google Scholar 

  • Yingst DR, Polasek PM, Kilgore P (1985) The effect of ethanol on the passive Ca permeability of human red cell ghosts measured by means of arsenazo III. Biochim Biophys Acta 813:277–281

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vincenzi, F.F., Hinds, T.R. (1988). Drug Effects on Plasma Membrane Calcium Transport. In: Baker, P.F. (eds) Calcium in Drug Actions. Handbook of Experimental Pharmacology, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71806-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71806-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71808-3

  • Online ISBN: 978-3-642-71806-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics