Skip to main content

The Apamin-Sensitive Ca2+-Dependent K+ Channel: Molecular Properties, Differentiation, Involvement in Muscle Disease, and Endogeneous Ligands in Mammalian Brain

  • Chapter
Calcium in Drug Actions

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 83))

Abstract

Apamin is a neurotoxin extracted from bee venom (Habermann 1972). It is a polypeptide of 18 amino acids with two disulfide bridges (Fig. 1). It is the only polypeptide neurotoxin, as far as we know, that crosses the blood-brain barrier. Analysis of the structure-function relationships of this toxin has shown that two of the 18 amino acids in the sequence have particular importance for the action of the toxin; they are Arg-13 and Arg-14 (Vincent et al. 1975). These two residues seem to be essential elements of the active site of the toxin. Chemical modifications elsewhere in the sequence may decrease the toxicity of the polypeptide, but do not suppress its biologic activity. Cumulative chemical modifications — of the amino group and of the imidazole of His-18 for example — may, however, abolish the activity of the toxin (Vincent et al. 1975). Solid phase synthesis of apamin and analogs has been carried out (Cosand and Merrifield 1977; Granier et al. 1978). This approach has confirmed that the active site of apamin comprises the two residues Arg-13 and Arg-14. The exact three-dimensional structure of the toxin remains unknown. However, recent solution analysis of apamin by NMR techniques has suggested that the toxin is highly ordered with an α-helical core and regions of β-type turns (Bystrov et al. 1980; Wemmer and Kallenbach 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams PR, Constanti A, Brown DA, Clark RB (1982) Fast voltage-sensitive potassium current in vertebrate sympathetic neurons. Nature 296:746–749

    Article  PubMed  CAS  Google Scholar 

  • Banks BEC, Brown C, Burgess GM, Burnstock G, Claret M, Cocks TM, Jenkinson DH (1979) Apamin blocks certain neurotransmitter-induced increases in potassium permeability. Nature 282:415–417

    Article  PubMed  CAS  Google Scholar 

  • Barchi RL, Cohen SA, Murphy LE (1980) Purification from rat sarcolemma of the saxi-toxin binding component of the excitable membrane sodium channel. Proc Natl Acad Sci USA 77:1306–1310

    Article  PubMed  CAS  Google Scholar 

  • Barhanin J, Pauron D, Lombet A, Norman RI, Vijverberg HPM, Giglio JR, Lazdunski M (1983 a) Electrophysiological characterization, solubilization and purification of the Tityus γ toxin receptor associated with the gating component of the Na+ channel from rat brain. EMBO J 2:915–920

    PubMed  CAS  Google Scholar 

  • Barhanin J, Schmid A, Lombet A, Wheeler KP, Lazdunski M (1983 b) Molecular size of different neurotoxin receptors on the voltage-sensitive Na+ channel. J Biol Chem 258:700–702

    PubMed  CAS  Google Scholar 

  • Barrett JN, Barrett EF, Dribbin LB (1981) Calcium-dependent slow potassium conductance in rat skeletal myotubules. Dev Biol 82:258–266

    Article  PubMed  CAS  Google Scholar 

  • Barrett JN, Magleby KL, Pallotta BS (1982) Properties of single calcium-activated potassium channels in cultured rat muscle. J Physiol (London) 331:211–230

    CAS  Google Scholar 

  • Bystrov VF, Okhanov VV, Miroshnikov AI, Ovchinnikov YA (1980) Solution spatial structure of apamin as derived from NMR study. FEBS Lett 119:113–117

    Article  PubMed  CAS  Google Scholar 

  • Cook NS, Haylett DN, Strong P (1983) High affinity binding of 125I-monoiodo apamin to isolated guinea-pig hepatocytes. FEBS Lett 152:265–269

    Article  PubMed  CAS  Google Scholar 

  • Cosand WL, Merrifield RB (1977) Concept of internal structural controls for evaluation of inactive synthetic peptide analog: synthesis of (ORN 13,14) apamin and its guanidi-nation to an apamin derivative with full neurotoxic activity. Proc Natl Acad Sci USA 74:2771–2775

    Article  PubMed  CAS  Google Scholar 

  • Fosset M, Schmid-Antomarchi H, Hugues M, Romey G, Lazdunski M (1984) The presence in pig brain of an endogenous equivalent of apamin, the bee venom peptide which specifically blocks Ca2+-dependent K+ channels. Proc Natl Acad Sci USA 81:7228–7232

    Article  PubMed  CAS  Google Scholar 

  • Granier C, Pedroso Muller E, Van Rietschoten J (1978) Use of synthetic analogs for a study on the structure-activity relationship of apamin. Eur J Biochem 82:293–299

    Article  PubMed  CAS  Google Scholar 

  • Grimm T (1975) The ages of onset and the age of death in patients with dystrophia myotonia. J Hum Genet 23:301–308

    Google Scholar 

  • Gruener R (1977) In vitro membrane excitability of diseased human muscles. In: Rowland LP (ed) Pathogenesis of human muscular dystrophy. Excerpta Medica, Amsterdam, p242

    Google Scholar 

  • Gruener R, Stern LZ, Payne C, Hannapel L (1975) Hyperthyroid myopathy intracellular electrophysiological measurements in biopsied human intercostal muscle. J Neuro Sci 24:339–349

    Article  CAS  Google Scholar 

  • Gruener R, Stern LZ, Markovitz D, Gerdes C (1979) Electrophysiologic properties of intercostal muscle fibers in human neuromuscular diseases. Muscle Nerve 2:165–172

    Article  PubMed  CAS  Google Scholar 

  • Habermann E (1972) Bee and wasp venom. Science 177:314–322

    Article  PubMed  CAS  Google Scholar 

  • Habermann E, Fischer K (1979) Bee venom neurotoxin (apamin): iodine labelling and characterization of binding sites. Eur J Biochem 94:355–364

    Article  PubMed  CAS  Google Scholar 

  • Hartshorne RP, Catterall WA (1981) Purification of the saxitoxin receptor of the sodium channel from rat brain. Proc Natl Acad Sci USA 78:4620–4624

    Article  PubMed  CAS  Google Scholar 

  • Hugues M, Romey G, Duval D, Vincent JP, Lazdunski M (1982 a) Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: voltage-clamp and biochemical characterization of the toxin receptor. Proc Natl Acad Sci USA 79:1308–1312

    Article  PubMed  CAS  Google Scholar 

  • Hugues M, Schmid H, Romey G, Duval D, Freiin C, Lazdunski M (1982 b) The calcium-dependent slow potassium conductance in cultured rat muscle cells: characterization with apamin. EMBO J 9:1039–1042

    Google Scholar 

  • Hugues M, Duval D, Kitabgi P, Lazdunski M, Vincent JP (1982 c) Preparation of a pure monoiodo derivative of the bee venom neurotoxin apamin and its binding properties to rat brain synaptosomes. J Biol Chem 257:2762–2769

    PubMed  CAS  Google Scholar 

  • Hugues M, Duval D, Schmid H, Kitabgi P, Lazdunski M (1982d) Specific binding and pharmacological interactions of apamin, the neurotoxin from bee venom, with guinea-pig colon. Life Sci 31:437–443

    Article  PubMed  CAS  Google Scholar 

  • Hugues M, Schmid H, Lazdunski M (1982 e) Identification of a protein component of the calcium-dependent potassium channel by affinity labelling with apamin. Biochem Bio-phys Res Commun 107:1577–1582

    Article  CAS  Google Scholar 

  • Latorre R, Vergara C, Hidalgo C (1982) Reconstitution in planar lipid bilayers of a calcium-dependent potassium channel from transverse tubule membranes isolated from rabbit skeletal muscle. Proc Natl Acad Sci USA 79:805–809

    Article  PubMed  CAS  Google Scholar 

  • Lazdunski M, Renaud JF (1982) The action of cardiotoxins on cardiac plasma membranes. Annu Rev Physiol 44:463–473

    Article  PubMed  CAS  Google Scholar 

  • Levinson SR, Ellory JC (1973) Molecular size of the tetrodotoxin binding site estimated by irradiation inactivation. Nature 245:122–123

    Article  CAS  Google Scholar 

  • Lipicky RJ (1977) Studies in human myotonic dystrophy. In: Rowland LP (ed) Pathogenesis of human muscular dystrophy. Excerpta Medica, Amsterdam, p 729

    Google Scholar 

  • Maas AD, Den Hertog A (1979) The effect of apamin on the smooth muscle cells of the guinea-pig taenia coli. Eur J Pharmacol 58:151–156

    Article  PubMed  CAS  Google Scholar 

  • Maas AD, Den Hertog A, Ras R, Van Den Akker J (1980) The action of apamin on guinea-pig taenia caeci. Eur J Pharmacol 67:265–274

    Article  PubMed  CAS  Google Scholar 

  • Marty A (1981) Calcium-dependent potassium channels with large unitary conductance in chromaffin cell membranes. Nature 291:497–500

    Article  PubMed  CAS  Google Scholar 

  • McComas AJ, Mrozek K (1968) The electrical properties of muscle fiber membranes in dystrophic myotonia and myotonia congenita. J Neurol Neurosurg Psychiatry 31:441–447

    Article  PubMed  CAS  Google Scholar 

  • Merickel M, Gray R, Chauvin P, Appel S (1981) Cultured muscle from myotonic muscular dystrophy patients: altered membrane electrical properties. Proc Natl Acad Sci USA 78:648–652

    Article  PubMed  CAS  Google Scholar 

  • Methfessel C, Boheim G (1982) The gating of single calcium-dependent potassium channel is described by an activation blockade mechanism. Biophys Struct Mech 9:35–60

    Article  PubMed  CAS  Google Scholar 

  • Moore HPM, Fritz LC, Raftery MA, Brokes JP (1982) Isolation and characterization of a monoclonal antibody against the saxitoxin-binding component from the electric organ of the eel Electrophorus electricus. Proc Natl Acad Sci USA 79:1673–1677

    Article  PubMed  CAS  Google Scholar 

  • Mourre C, Schmid-Antomarchi H, Hugues M, Lazdunski M (1984) Autoradiographic localization of apamin-sensitive Ca2+-dependent K+ channels in rat brain. Eur J Pharmacol 100:135–136

    Article  PubMed  CAS  Google Scholar 

  • Mourre C, Hugues M, Lazdunski M (1986) Quantitative autoradiographic mapping in rat brain of the receptor of apamin, a polypeptide toxin specific for one class of Ca2+-dependent K+ channel. Brain Res 382:239–249

    Article  PubMed  CAS  Google Scholar 

  • Neher E, Sakmann B, Steinbach JH (1978) The extracellular patch-clamp: a method for resolving current through individual open channels in biological membranes. Pflugers Arch 375:219–228

    Article  PubMed  CAS  Google Scholar 

  • Norman RI, Schmid A, Lombet A, Barhanin J, Lazdunski M (1983) Purification of binding protein for Tityus y toxin identified with the gating component of the voltage-sensitive Na+ channel. Proc Natl Acad Sci USA 80:4164–4168

    Article  PubMed  CAS  Google Scholar 

  • Pennefather P, Lancaster B, Adams PR, Nicoll RA (1985) Two distinct Ca-dependent K currents in bullfrog sympathetic ganglion cells. Proc Natl Acad Sci USA 82:3040–3044

    Article  PubMed  CAS  Google Scholar 

  • Renaud JF, Desnuelle C, Schmid-Antomarchi H, Hugues M, Serratrice G, Lazdunski M (1986) Expression of the apamin receptor in muscles of patients with myotonic muscular dystrophy. Nature 319:678–680

    Article  PubMed  CAS  Google Scholar 

  • Romey G, Lazdunski M (1984) The coexistence in rat muscle cells of two distinct classes of Ca2+-dependent K+ channels with different pharmacological properties and different physiological functions. Biochem Biophys Res Commun 118:669–674

    Article  PubMed  CAS  Google Scholar 

  • Rudel R, Lehmann-Horn F (1985) Membrane changes in cells from myotonia patients. Physiol Rev 65:310–356

    PubMed  CAS  Google Scholar 

  • Schmid-Antomarchi H, Hugues M, Norman RI, Ellory JC, Borsotto M, Lazdunski M (1984) Molecular properties of the apamin-sensitive Ca2+-dependent K+ channel: radiation-inactivation, affinity labelling and solubilization. Eur J Biochem 142:1–6

    Article  PubMed  CAS  Google Scholar 

  • Schmid-Antomarchi H, Renaud JF, Romey G, Hugues M, Schmid A, Lazdunski M (1985) The all-or-none role of innervation in the expression of the apamin-sensitive Ca2+-activated K+ channel in mammalian skeletal muscle. Proc Natl Acad Sci USA 82:2188–2195

    Article  PubMed  CAS  Google Scholar 

  • Schweitz H, Lazdunski M (1984) A microradioimmunoassay for apamin. Toxicon 22:985–988

    Article  PubMed  CAS  Google Scholar 

  • Seagar MJ, Labbé-Julié C, Granier C, Van Rietshoten J, Couraud F (1985) Photoaffinity labeling of components of the apamin-sensitive K+ channel in neuronal membranes. J Biol Chem 260:3895–3898

    PubMed  CAS  Google Scholar 

  • Tashmoush AJ, Askanas V, Nelson PG, Engel WK (1983) Electrophysiological properties of aneurally cultured muscle from patients with myotonic muscular atrophy. Neurology 33:311–316

    Google Scholar 

  • Todorov A, Jequier M, Klein D, Morton NE (1970) Analyse de la ségrégation dans la dystrophic myotonique. J Hum Genet 18:387–406

    CAS  Google Scholar 

  • Vincent JP, Schweitz H, Lazdunski M (1975) Structure-function relationships and site of action of apamin. A neurotoxic polypeptide of bee venom with an action on the central nervous system. Biochemistry 14:2521–2525

    Article  PubMed  CAS  Google Scholar 

  • Wemmer D, Kallenbach NR (1983) Structure of apamin in solution, 2 dimensional NMR study. Biochemistry 22:1901–1906

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lazdunski, M. et al. (1988). The Apamin-Sensitive Ca2+-Dependent K+ Channel: Molecular Properties, Differentiation, Involvement in Muscle Disease, and Endogeneous Ligands in Mammalian Brain. In: Baker, P.F. (eds) Calcium in Drug Actions. Handbook of Experimental Pharmacology, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71806-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71806-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71808-3

  • Online ISBN: 978-3-642-71806-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics