Skip to main content

Exo-Endocytosis: Mechanisms of Drug and Toxin Action

  • Chapter
Book cover Calcium in Drug Actions

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 83))

Abstract

All eukaryotic cells (except red blood cells) share the ability to segregate intracellularly (within membrane-bounded organelles) their specific hydrophilic secretion products (e.g., proteins, peptides, classical neurotransmitters, such as amines, acetylcholine, and amino acids) and to discharge these products by a process known as exocytosis. The term exocytosis was originally proposed to describe the release in bulk of the contents of a membrane-bounded release organelle (named, depending on its size, a granule or a vesicle). The sequence of events leading to the release process includes the fusion of the organelle membrane with the plasmalemma, followed by the fission of the fused membranes. Such a fission, which proceeds by the sequential elimination of membrane layers, creates continuity between the intraorganelle compartment and the extracellular space. With time, the meaning of the term exocytosis has expanded to include not only the release, but also the preceding fusion-fission steps. Such an extended meaning is used throughout this chapter (Palade 1975; Ceccarelli and Hurlbut 1980 a; Meldolesi and Ceccarelli 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker PF (1984) Multiple controls for secretion? Nature 310:619–620

    Article  Google Scholar 

  • Baker PF, Crawford AC (1975) A note on the mechanism by which inhibitors of the sodium pump accelerate spontaneous release of transmitter from motor nerve terminals. J Physiol (Lond) 247:209–226

    CAS  Google Scholar 

  • Baker PF, Knight DE (1981) Calcium control of exocytosis and endocytosis in bovine adrenal medullary cells. Philos Trans R Soc Lond [Biol] 296:83–104

    Article  CAS  Google Scholar 

  • Barrowman MM, Cockcroft S, Gomperts BD (1986) Two roles for guanine nucleotides in the stimulus-secretion sequence of neutrophiles. Nature 319:504–507

    Article  PubMed  CAS  Google Scholar 

  • Bass L, Moore WJ (1966) Electrokinetic mechanism of miniature postsynaptic potentials. Proc Natl Acad Sci USA 55:1214–1217

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositol tris-phosphate, a novel second messenger in cellular signal transduction. Nature 312:315–320

    Article  PubMed  CAS  Google Scholar 

  • Black JD, Dolly JO (1986 a) Interaction of 125I-labelled botulinum neurotoxins with nerve terminals. I. Ultrastructural autoradiographic localization and quantitation of distinct membrane acceptors for type A and B on motor nerves. J Cell Biol 103:521–534

    Article  PubMed  CAS  Google Scholar 

  • Black JD, Dolly JO (1986 b) Interaction of 125I-labelled botulinum neurotoxin with nerve terminals. II Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis. J Cell Biol 103:535–544

    Article  PubMed  CAS  Google Scholar 

  • Blioch ZL, Glagoleva IM, Liberman EA, Nenashev VA (1968) A study of the mechanism of quantal transmitter release at a chemical synapse. J Physiol (Lond) 199:11–35

    CAS  Google Scholar 

  • Bretscher MS, Thompson JN, Pierce BMF (1980) Coated pits act as molecular filters. Proc Natl Acad Sci USA 77:4156–4159

    Google Scholar 

  • Brown EM, Redgrave J, Thatcher J (1984) Effect of phorbol ester TPA on PTH secretion. Evidence for a role for protein kinase C in the control of PTH release. FEBS Lett 175:72–75

    Article  PubMed  CAS  Google Scholar 

  • Ceccarelli B, Clementi F (1979) Neurotoxins, tools in neurobiology. Raven, New York

    Google Scholar 

  • Ceccarelli B, Hurlbut WP (1975) The effects of prolonged repetitive stimulation in hemicholinium on the frog neuromuscular junction. J Physiol (Lond) 247:163–188

    CAS  Google Scholar 

  • Ceccarelli B, Hurlbut WP (1980 a) Vesicle hypothesis of the release of quanta of acetylcholine. Physiol Rev 60:396–441

    PubMed  CAS  Google Scholar 

  • Ceccarelli B, Hurlbut WP (1980 b) Ca2+-dependent recycling of synaptic vesicles at the frog neuromuscular junction. J Cell Biol 87:297–303

    Article  PubMed  CAS  Google Scholar 

  • Ceccarelli B, Hurlbut WP, Mauro A (1973) Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J Cell Biol 57:499–524

    Article  PubMed  CAS  Google Scholar 

  • Cooke E, Hallett MB (1985) The role of C-kinase in the physiological activation of the neutrophil oxidase. Biochem J 232:323–327

    PubMed  CAS  Google Scholar 

  • Crawford HC (1975) Lithium ions and the release of transmitter at the frog neuromuscular junction. J Physiol (Lond) 246:109–142

    CAS  Google Scholar 

  • De Camilli P, Peluchetti D, Meldolesi J (1976) Dynamic changes of the lumenal plasmalemma in stimulated parotid acinar cells. J Cell Biol 70:59–74

    Article  PubMed  Google Scholar 

  • De Camilli P, Harris SM Jr, Huttner WB, Greengard P (1983) Synapsin I (protein I), a nerve terminal-specific phosphoprotein. II. Its specific association with synaptic vesicles demonstrated by immunocytochemistry in agarose-embedded synaptosomes. J Cell Biol 96:1355–1373

    Article  PubMed  Google Scholar 

  • Di Virgilio F, Lew DP, Pozzan T (1984) Protein kinase C activation of physiological processes in human neutrophils at vanishingly small cytosolic Ca2+ levels. Nature 310:691–693

    Article  PubMed  Google Scholar 

  • Di Virgilio F, Pozzan T, Wollheim CB, Vicentini LM, Meldolesi J (1986) Tumor promoter phorbol myristate acetate inhibits Ca2+ influx through voltage-gated Ca2+ channels in two secretory cell lines, PC 12 and RIN m5F. J Biol Chem 261:32–36

    PubMed  Google Scholar 

  • Dolly JO, Haliwell JV, Black JD, Williams RS, Pelchen-Matthews A, Breeze AL, Mehraban F, Othman IB, Black AR (1984) Botulinum neurotoxin and dendrotoxin as probes for studies on transmitter release. J Physiol (Paris) 79:280–303

    CAS  Google Scholar 

  • Douglas WW (1974) Exocytosis and the exocytosis-vesiculation sequence: with special reference to neurohypophysis, chromaffin and mast cells, calcium and calcium ionophores. In: Thorn NA, Petersen OH (ed) Secretory mechanisms in exocrine glands. Munksgaard, Copenhagen, pp 116–136

    Google Scholar 

  • Farquhar MG (1982) Membrane recycling in secretory cells: pathways to the Golgi complex. CIBA Found Symp 92:157–183

    Google Scholar 

  • Fernandez JM, Neher E, Gomperts BD (1984) Capacitance measurements reveal stepwise fusion events in degranulating mast cells. Nature 312:453–455

    Article  PubMed  CAS  Google Scholar 

  • Fesce R, Segal JR, Ceccarelli B, Hurlbut WP (1986) Effects of black widow spider venom and Ca on quantal secretion at the frog neuromuscular junction. J Gen Physiol 88:737–752

    Google Scholar 

  • Fritz LC, Mauro A (1982) The ionic dependence of black widow spider venom action at the stretch receptor neuron and neuromuscular junction of crustaceans. J Neurobiol 13:385–401

    Article  PubMed  CAS  Google Scholar 

  • Ginsborg BL, Jenkinson DH (1976) Transmission of impulses from nerve to muscle. In: Zaimis E (ed) Neuromuscular junction. Springer, Berlin Heidelberg New York, pp 229–364 (Handbook of experimental pharmacology, vol 42)

    Google Scholar 

  • Gorio A, Hurlbut WP, Ceccarelli B (1978) Acetylcholine compartments in mouse diaphragm: a comparison of the effects of black widow spider venom, electrical stimulation and high concentrations of potassium. J Cell Biol 78:716–733

    Article  PubMed  CAS  Google Scholar 

  • Gorio A, Rubin LL, Mauro A (1978) Double mode of action of black widow spider venom on frog neuromuscular junction. J Neurocytol 7:193–205

    Article  PubMed  CAS  Google Scholar 

  • Grasso A, Alema S, Rufini S, Senni MI (1980) Black widow spider toxin-induced calcium fluxes and transmitter release in a neuro secretory cell line. Nature 283:774–776

    Article  PubMed  CAS  Google Scholar 

  • Grynkyevicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    Google Scholar 

  • Gunther GR (1981) Effect of 12-O-tetradecanoyl-phorbol-13-acetate on Ca2+ efflux and protein discharge in pancreatic acini. J Biol Chem 256:12040–12045

    PubMed  CAS  Google Scholar 

  • Haimann C, Torri-Tarelli F, Fesce R, Ceccarelli B (1985) Measurement of quantal secretion induced by ouabain and its correlation with depletion of synaptic vesicles. J Cell Biol 101:1953–1965

    Article  PubMed  CAS  Google Scholar 

  • Haimann C, Meldolesi J, Ceccarelli B (1987) The phorbol ester enhances the evoked quantal release of acetylcholine at frog neuromuscular junction. Pflügers Arch 408:27–31

    Article  PubMed  CAS  Google Scholar 

  • Hallam TJ, Daniel JL, Kendrick-Jones R, Rink TJ (1985) Relationship between cytoplasmic free calcium and myosin light chain phosphorylation in intact platelets. Biochem J 232:373–377

    PubMed  CAS  Google Scholar 

  • Harris TB (1986) Proceedings of the 8th world congress of animal, plant and microbial toxins. Oxford University Press, Oxford

    Google Scholar 

  • Herzog V (1981) Endocytosis in secretory cells. Philos Trans R Soc Lond [Biol] 269:67–72

    Article  Google Scholar 

  • Heuser JE, Reese TS (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57:315–344

    Article  PubMed  CAS  Google Scholar 

  • Hoch T, Tomero-Mira M, Ehrich BE, Finkelstein A, Das Gupta BR, Simpson LL (1985) Channels formed by botulinum, tetanus and diphtheria toxins in planar lipid bilayers. Relevance of translocation of proteins across membranes. Proc Natl Acad Sci USA 82:1682–4696

    Google Scholar 

  • Hooper JE, Kelly RB (1984) Calmodulin is tightly associated with synaptic vesicles independent of calcium. J Biol Chem 259:148–153

    PubMed  CAS  Google Scholar 

  • Houslay MD (1985) Renaissance of cyclic GMP. Trends Biochem Sci 10:465–466

    Article  Google Scholar 

  • Howard BD, Gundersen CB (1980) Effects and mechanisms of Polypeptide neurotoxins that act presynaptically. Ann Rev Pharmacol Toxicol 20:307–336

    Article  CAS  Google Scholar 

  • Hucho F, Ovchinnichov YA (1983) Toxins as tools in neurochemistry. de Gruyter, Berlin New York

    Google Scholar 

  • Hurlbut WP, Ceccarelli B (1979) Use of black widow spider venom to study the release of neurotransmitters. In: Ceccarelli B, Clementi F (eds) Neurotoxins, tools in neurobiology. Raven, New York, pp 87–115

    Google Scholar 

  • Hutton JC, Peshavaria M, Brocklehurst KW (1984) Phorbol ester stimulation of insulin release and secretory granule protein phosphorylation in a transplantable rat insulinoma. Biochem J 224:483–490

    PubMed  CAS  Google Scholar 

  • Jaimovich E, Ildefonse M, Barhanin J, Rougier O, Lazdunski M (1982) Centruroides toxin, a selective blocker of surface Na+ channels in skeletal muscle: voltage clamp analysis and biochemical characterization of the receptor. Proc Natl Acad Sci USA 79:3896–3900

    Google Scholar 

  • Katz B (1966) Nerve, muscle, and synapse. McGraw-Hill, New York

    Google Scholar 

  • Katz B, Miledi R (1977) Transmitter leakage from motor nerve endings. Proc R Soc Lond [Biol] 196:59–72

    Google Scholar 

  • Keith CH, Ratan R, Maxfield FR, Bajer A, Shelanski ML (1985) Local cytoplasmic calcium gradients in living mitotic cells. Nature 316:848–850

    Article  PubMed  CAS  Google Scholar 

  • Kelly RB (1985) Pathway of protein secretion in eukaryotes. Science 230:25–31

    Article  PubMed  CAS  Google Scholar 

  • Kenigsberg RL, Trifarô JM (1985) Microinjection of calmodulin antibodies into cultured chromaffin cells blocks catecholamine release in response to stimulation. Neuroscience 14:335–347

    Article  PubMed  CAS  Google Scholar 

  • Kenigsberg RL, Coté A, Trifarò JM (1982) Trifluoperazine, a calmodulin inhibitor, blocks secretion in cultured chromaffin cells at a step distal from calcium entry. Neuroscience 7:2277–2286

    Article  PubMed  CAS  Google Scholar 

  • Kerr LM, Yoshikami D (1984) A venom peptide with a novel presynaptic blocking action. Nature 308:282–284

    Article  PubMed  CAS  Google Scholar 

  • Knight DE, Baker PF (1982) Calcium dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric field. J Membr Biol 68:107–140

    Article  PubMed  CAS  Google Scholar 

  • Knight DE, Baker PF (1983) The phorbol ester TPA increases the affinity of exocytosis for calcium in leaky adrenal medullary cells. FEBS Lett 160:98–100

    Article  PubMed  CAS  Google Scholar 

  • Knight DE, Baker PF (1985) Guanine nucleotides and Ca2+-dependent exocytosis. Studies on two adrenal cell preparations. FEBS Lett 189:345–349

    Article  PubMed  CAS  Google Scholar 

  • Knight DE, Scrutton MC (1985) The relationship between intracellular second messengers and platelet secretion. Biochem Soc Trans 12:969–971

    Google Scholar 

  • Knight DE, Tonge DA, Baker PF (1985) Inhibition of exocytosis in bovine adrenal medullary cells by botulinum toxin type D. Nature 317:719–721

    Article  PubMed  CAS  Google Scholar 

  • Koike H, Meldolesi J (1981) Post-stimulation retrieval of lumenal surface membrane in parotid acinar cells is Ca2+-dependent. Exp Cell Res 134:377–388

    Article  PubMed  CAS  Google Scholar 

  • Kolesnick RN, Geshenghorn MG (1985) Direct evidence that burst but not sustained secretion of prolactin stimulated by TRH is dependent on elevation of cytoplasmic Ca. J Biol Chem 260:5217–5220

    PubMed  CAS  Google Scholar 

  • Kostynk PG (1984) Metabolic control of ionic channels in the neuronal membrane. Neuroscience 13:983–990

    Article  Google Scholar 

  • Llinás R, Steinberg Z, Walton K (1981) Relationship between calcium current and postsynaptic potential in squid giant synapse. Biophys J 33:323–352

    Article  PubMed  Google Scholar 

  • Llinás R, McGuiness TLM, Leonard CS, Sugimori M, Greengard P (1985) Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse. Proc Natl Acad Sci USA 82:3035–3039

    Google Scholar 

  • Lundberg JM, Hökfelt T (1983) Coexistence of peptides and classical neurotransmitters. Trends Neurosci 6:325–333

    Article  CAS  Google Scholar 

  • Madeddu L, Saito I, Hsiao TH, Meldolesi J (1985) Leptinotoxin-h action in synaptosomes and neurosecretory cells. Stimulation of neurotransmitter release. J Neurochem 45:1719–1730

    Article  PubMed  CAS  Google Scholar 

  • Meldolesi J, Ceccarelli B (1981) Exocytosis and membrane recycling. Philos Trans R Soc Lond [Biol] 296:55–65

    Article  CAS  Google Scholar 

  • Meldolesi J, Huttner WB, Tsien RY, Pozzan T (1984) Free cytoplasmic Ca2+ and neurotransmitter release: studies on PC12 cells and synaptosomes exposed to α-latrotoxin. Proc Natl Acad Sci USA 81:620–624

    Google Scholar 

  • Meldolesi J, Scheer H, Madeddu L, Wanke E (1986) On the mechanism of action of α-latrotoxin, the presynaptic stimulatory toxin of the black widow spider venom. Trends Pharm Sci 7:151–455

    Article  CAS  Google Scholar 

  • Miller RJ (1984) Toxin probes for voltage-sensitive calcium channels. Trends Neurosci 7:309

    Article  Google Scholar 

  • Miller TM, Heuser JE (1984) Endocytosis of synaptic vesicle membrane at the frog neuromuscular junction. J Cell Biol 98:685–698

    Article  PubMed  CAS  Google Scholar 

  • Montecucco C (1986) How do tetanus and botulinum toxin bind to neuronal membranes? Trends Biochem Sci 11:314–316

    Article  CAS  Google Scholar 

  • Navone F, Greengard P, Camilli P De (1984) Synapsin I in nerve terminals: selective association with small synaptic vesicle. Science 226:1209–1211

    Article  PubMed  CAS  Google Scholar 

  • Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci USA 79:6712–6716

    Google Scholar 

  • Niggli V, Knight DE, Baker PF, Vigny A, Henry JP (1984) Thyrosine hydroxylase in leaky adrenal medullary cells. Evidence for in situ phosphorylation by separate Ca2+ and cyclic AMP-dependent enzymes. J Neurochem 43:646–658

    Article  PubMed  CAS  Google Scholar 

  • Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316:440–443

    Article  PubMed  CAS  Google Scholar 

  • Palade GE (1975) Intracellular aspects of the process of protein secretion. Science 189:347–358

    Article  PubMed  CAS  Google Scholar 

  • Pandol SJ, Schoeffield MS, Sachs G, Muallem S (1985) Role of free Ca2+ in secretagogue stimulated amylase release from dispersed acini from guinea pig pancreas. J Biol Chem 260:10081–40086

    PubMed  CAS  Google Scholar 

  • Patzak A, Winkler H (1986) Exocytotic exposure and recycling of membrane antigens of chromaffin granules: ultrastructural evaluation after immunolabelling. J Cell Biol 102:510–515

    Article  PubMed  CAS  Google Scholar 

  • Patzak A, Bock G, Fischer-Colbrie R, Schanchenstein K, Schmidt W, Lingg G, Winkler H (1984) Exocytotic exposure and retrieval of membrane antigens of chromaffin granules: quantitative evaluation of immunofluorescence on the surface of chromaffin cells. J Cell Biol 98:1817–4824

    Article  PubMed  CAS  Google Scholar 

  • Pollard HB, Pozoles CJ, Creutz CE (1981) Mechanism of calcium action and release of vesicle-bound hormones during exocytosis. Rec Prog Horm Res 37:299–332

    Google Scholar 

  • Pozzan T, Gatti G, Dozio N, Vicentini LM, Meldolesi J (1984) Ca2+-dependent and -independent release of neurotransmitters from PC12 cells. A role for protein kinase C activation? J Cell Biol 99:628–638

    Article  PubMed  CAS  Google Scholar 

  • Quissel DO, Deisher LM, Barzen KA (1985) The rate determining step in cAMP-mediated exocytosis in the rat parotid and submandibular glands appears to involve analogous 26 kDa integral membrane phosphoprotein. Proc Natl Acad Sci USA 82:3237–3241

    Google Scholar 

  • Rane SG, Dunlap K (1986) Kinase C activator 1,2-oleoyl acetylglycerol attenuates voltage-dependent calcium current in sensory neurons. Proc Natl Acad Sci USA 83:184–188

    Google Scholar 

  • Reichardt LF, Kelly RB (1983) A molecular description of nerve terminal function. Annu Rev Biochem 52:871–926

    Article  PubMed  CAS  Google Scholar 

  • Reuter H (1983) Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301:569–574

    Article  PubMed  CAS  Google Scholar 

  • Rink TJ, Smith SW, Tsien RY (1982) Cytoplasmic free Ca2+ in human platelets: Ca2+ thresholds and Ca-independent activation for shape changes and secretion. FEBS Lett 148:21–26

    Article  PubMed  CAS  Google Scholar 

  • Rink TJ, Sanchez A, Hallam TJ (1983) Diacylglycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets. Nature 305:317–319

    Article  PubMed  CAS  Google Scholar 

  • Sakmann B, Neher E (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Ann Rev Physiol 46:455–472

    Article  CAS  Google Scholar 

  • Scheer H, Meldolesi J (1985) Purification of the putative α-latrotoxin receptor from bovine synaptosomal membranes in an active binding form. EMBO J 4:323–327

    PubMed  CAS  Google Scholar 

  • Schramm M, Selinger Z (1975) The functions of cyclic AMP and calcium as alternative second messengers in parotid gland and pancreas. J Cycl Nucl Res 1:181–192

    CAS  Google Scholar 

  • Schulz I, Stolze H (1980) The exocrine pancreas: the role of secretatogues, cyclic nucleotides and calcium in enzyme secretion. Ann Rev Physiol 42:127–156

    Article  CAS  Google Scholar 

  • Segal JR, Ceccarelli B, Fesce R, Hurlbut WP (1985) Miniature endplate potential frequency and amplitude determined by an extension of Campbell’s theorem. Biophys J 47:183–202

    Article  PubMed  CAS  Google Scholar 

  • Sellin LC (1985) The pharmacological mechanism of botulism. Trends Pharmacol Sci 6:80–83

    Article  CAS  Google Scholar 

  • Shoback DM, Thatcher J, Leombruno R, Brown EM (1984) Relationship between parathyroid hormone secretion and cytosolic calcium concentration in dispersed parathyroid cells. Proc Natl Acad Sci USA 81:3113–3117

    Google Scholar 

  • Silinski EM (1985) The biophysical pharmacology of calcium-dependent acetylcholine secretion. Pharmacol Rev 37:81–132

    Google Scholar 

  • Simpson LL (1986) Molecular pharmacology of botulinum toxin and tetanus toxin. Ann Rev Pharmacol Toxicol 26:427–454

    Article  CAS  Google Scholar 

  • Smith AD, Winkler H (1972) Fundamental mechanisms of release of catecholamines. In: Blasko H, Muscholl E (eds) Springer, Berlin Heidelberg New York, pp 538–617 (Handbook of experimental pharmacology, vol 33)

    Google Scholar 

  • Takahashi M, Tatsumi M, Ohizumi Y, Yasumoto T (1983) Ca2+ channel activating function of maitotoxin, the most potent marine toxin known, in clonal rat pheochromocytoma cells. J Biol Chem 258:10944–10947

    PubMed  CAS  Google Scholar 

  • Tauc L (1982) Non-vesicular release of neurotransmitter. Physiol Rev 62:857–893

    PubMed  CAS  Google Scholar 

  • Thilo L (1985) Selective internalization of granule membrane after secretion in mast cells. Proc Natl Acad Sci USA 82:1716–1720

    Google Scholar 

  • Thureson-Klein A (1983) Exocytosis from large and small dense-cored vesicles in noradrenergic nerve terminals. Neuroscience 10:245–259

    Article  PubMed  CAS  Google Scholar 

  • Torri-Tarelli F, Grohovaz F, Fesce R, Ceccarelli B (1985) Temporal coincidence between synaptic vesicle fusion and quantal secretion of acetylcholine. J Cell Biol 101:1386–1399

    Article  PubMed  CAS  Google Scholar 

  • Tsien RY, Pozzan T, Rink TJ (1982) Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored by a new, intracellularly trapped fluorescent indicator. J Cell Biol 94:325–334

    Article  PubMed  CAS  Google Scholar 

  • Tsien RY, Pozzan T, Rink TJ (1984) Measuring and manipulating cytosolic Ca2+ with trapped indicators. Trends Biochem Sci 9:263–266

    Article  CAS  Google Scholar 

  • Valtorta F, Madeddu L, Meldolesi J, Ceccarelli B (1984) Specific localization of the α-latrotoxin receptor in the nerve terminal plasma membrane. J Cell Biol 99:124–132

    Article  PubMed  CAS  Google Scholar 

  • Vara F, Rozengurt E (1984) Stimulation of Na+/H+ antiport activity of epidermal growth factor and insulin occurs without activation of protein kinase C. Biochim Biophys Res Commun 130:646–653

    Article  Google Scholar 

  • Wanke E, Ferroni A, Gattanini F, Meldolesi J (1986) α-latrotoxin of the black widow spider venom opens a small, non closing cation channel. Biochim Biophys Res Commun 134:320–325

    Article  CAS  Google Scholar 

  • Weller U, Bernhardt U, Siemen D, Dreyer F, Vogel W, Haberman E (1985) Electrophysiological and neurobiochemical evidence for the blockade of a potassium channel by dendrotoxin. Naunyn-Schmiedebergs Arch Pharmacol 330:77–83

    Article  PubMed  CAS  Google Scholar 

  • Williams DA, Fogarty KE, Tsien RY, Fay FS (1985) Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2. Nature 318:558–561

    Article  PubMed  CAS  Google Scholar 

  • Wrenn RW (1984) Phosphorylation of a pancreatic zymogen granule membrane protein by endogenous calcium-phospholipid dependent protein kinase. Biochim Biophys Acta 775:1–6

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meldolesi, J., Pozzan, T., Ceccarelli, B. (1988). Exo-Endocytosis: Mechanisms of Drug and Toxin Action. In: Baker, P.F. (eds) Calcium in Drug Actions. Handbook of Experimental Pharmacology, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71806-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71806-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71808-3

  • Online ISBN: 978-3-642-71806-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics