Skip to main content

Drugs Acting on Calcium Channels

  • Chapter
Calcium in Drug Actions

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 83))

Abstract

Drugs acting on calcium channels have been studied extensively. Calcium antagonists or calcium channel blockers have been the subject of both basic and clinical investigations for some time, and some of them have been developed into useful therapeutic drugs for the treatment of hypertension and coronary disorders (Fleckenstein 1977; Triggle 1981). However, most of these studies were performed with classical pharmacologic techniques involving measurement of muscle contractions and tension. It was not until the early 1980s that the drugs acting on calcium channels became a subject of modern electrophysiologic investigations using voltage-clamp techniques (Hagiwara and Byerly 1981, 1983; Tsien 1983; Pappone and Cahalan 1986; Reuter 1983; Skerritt and Macdonald 1984; Yaksh and Noueihed 1985; Werz and Macdonald 1983 a, 1985; Macdonald and Werz 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong CM, Matteson DR (1985) Two distinct populations of calcium channels in a clonal line of pituitary cells. Science 227:65–67

    Article  PubMed  CAS  Google Scholar 

  • Armstrong CM, Swenson RP, Taylor SR (1982) Block of squid axon K channels by internally and externally applied barium ions. J Gen Physiol 80:663–682

    Article  PubMed  CAS  Google Scholar 

  • Ashcroft FM, Stanfield PR (1980) Calcium dependence of the inactivation of calcium currents in the skeletal muscle fibers of an insect. Science 213:224–226

    Article  Google Scholar 

  • Bean BP (1985) Two kinds of calcium channels in canine atrial cells. Differences in kinetics, selectivity, and pharmacology. J Gen Physiol 86:1–30

    Article  PubMed  CAS  Google Scholar 

  • Beeler GW, McGuigan JAS (1978) Voltage clamping of multicellular myocardial preparations: capabilities and limitations of existing methods. Prog Biophys Mol Biol 34:219–254

    Article  PubMed  CAS  Google Scholar 

  • Brehm P, Eckert R (1978) Calcium entry leads to inactivation of calcium channel in Paramecium. Science 202:1203–1206

    Article  PubMed  CAS  Google Scholar 

  • Carbone E, Lux HD (1984) A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature 310:501–502

    Article  PubMed  CAS  Google Scholar 

  • Dunlap K, Fischbach GD (1981) Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones. J Physiol (Lond) 317:519–535

    CAS  Google Scholar 

  • Eckert R, Chad JE (1984) Inactivation of Ca channels. Prog Biophys Mol Biol 44:215–267

    Article  PubMed  CAS  Google Scholar 

  • Eckert R, Ewald D (1982) Residual calcium ions depress activation of calcium-dependent current. Science 216:730–733

    Article  PubMed  CAS  Google Scholar 

  • Fedulova SA, Kostyuk PG, Vaselovsky NS (1985) Two types of calcium channels in the somatic membrane of new-born rat dorsal root ganglion neurones. J Physiol (Lond) 359:431–446

    CAS  Google Scholar 

  • Fenwick EM, Marty A, Neher E (1982) Sodium and calcium channels in bovine chromaffin cells. J Physiol (Lond) 331:599–635

    CAS  Google Scholar 

  • Ferrendelli JA, Daniels-McQueen S (1982) Comparative actions of phenytoin and other anticonvulsant drugs on potassium- and veratridine-stimulated calcium uptake in synaptosomes. J Pharmacol Exp Ther 220:29–34

    PubMed  CAS  Google Scholar 

  • Fishman MC, Spector I (1981) Potassium current suppression by quinidine reveals additional calcium currents in neuroblastoma cells. Proc Natl Acad Sci USA 78:5245–5249

    Article  PubMed  CAS  Google Scholar 

  • Fleckenstein A (1977) Specific pharmacology of calcium in myocardium, cardiac pacemakers and vascular smooth muscle. Annu Rev Pharmacol Toxicol 17:149–166

    Article  PubMed  CAS  Google Scholar 

  • Fox AP, Krasne S (1984) Two calcium currents in Neanthes arenaceodentatus egg cell membranes. J Physiol (Lond) 356:491–505

    CAS  Google Scholar 

  • Geduldig D, Junge D (1968) Sodium and calcium components of action potentials in the Aplysia giant neurone. J Physiol (Lond) 199:347–365

    CAS  Google Scholar 

  • Geduldig D, Junge D (1970) Voltage clamp of the Aplysia giant neurone: early sodium and calcium currents. J Physiol (Lond) 211:217–244

    CAS  Google Scholar 

  • Goldman DE (1943) Potential, impedance and rectification in membranes. J Gen Physiol 27:37–60

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara S, Byerly L (1981) Calcium channel. Annu Rev Neurosci 4:69–125

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara S, Byerly L (1983) The calcium channel. Trends Neurosci 6:189–193

    Article  CAS  Google Scholar 

  • Hagiwara S, Naka K (1964) The initiation of spike potential in barnacle muscle fibers under low intracellular Ca++. J Gen Physiol 48:141–162

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara S, Ohmori H (1983) Studies of single calcium channel currents in rat clonal pituitary cells. J Physiol (Lond) 336:649–661

    CAS  Google Scholar 

  • Hagiwara S, Chichibu S, Nada K (1964) The effects of various ions on resting and spike potentials of barnacle muscle fibers. J Gen Physiol 48:163–179

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara S, Miyazaki S, Moody W, Patlak J (1978) Blocking effects of barium and hydrogen ions on the potassium current during anomalous rectification in the starfish egg. J Physiol (Lond) 279:167–185

    CAS  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity of the giant axon of the squid. J Physiol (Lond) 108:37–77

    CAS  Google Scholar 

  • Jahnsen H, Llinás R (1984) Ionic basis for the electroresponsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol (Lond) 349:227–247

    CAS  Google Scholar 

  • Katayama Y, Nishi S (1984) Sites and mechanisms of actions of enkephalin in the feline parasympathetic ganglion. J Physiol (Lond) 351:111–121

    CAS  Google Scholar 

  • Kato E, Narahashi T (1982) Characteristics of the electrical response to dopamine in neuroblastoma cells. J Physiol (Lond) 333:213–226

    CAS  Google Scholar 

  • Kerkut GA, Gardner DR (1967) The role of calcium ions in the action potentials of Helix aspersa neurones. Comp Biochem Physiol 20:147–162

    Article  CAS  Google Scholar 

  • Kimhi Y, Palfrey C, Spector I, Barak Y, Littauer UZ (1976) Maturation of neuroblastoma cells in the presence of dimethylsulfoxide. Proc Natl Acad Sci USA 73:462–466

    Article  PubMed  CAS  Google Scholar 

  • Koketsu K, Cerf JA, Nishi S (1959) Further observations on the activity of frog spinal ganglion cells in sodium-free solutions. J Neurophysiol 22:693–703

    PubMed  CAS  Google Scholar 

  • Llinás R, Yarom Y (1981) Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J Physiol (Lond) 315:569–584

    Google Scholar 

  • Llinás R, Steinberg IZ, Walton K (1981) Presynaptic calcium currents in squid giant synapse. Biophys J 33:289–322

    Article  PubMed  Google Scholar 

  • Macdonald RL, Nelson PG (1978) Specific opiate-induced depression of transmitter release from dorsal root ganglion cells in culture. Science 199:1449–1451

    Article  PubMed  CAS  Google Scholar 

  • Macdonald RL, Werz MA (1986) Dynorphin A decreases voltage-dependent calcium conductance of mouse dorsal root ganglion neurones. J Physiol (Lond) 377:237–249

    CAS  Google Scholar 

  • McLean MJ, Macdonald RL (1983) Multiple actions of phenytoin on mouse spinal cord neurons in cell culture. J Pharmacol Exp Ther 227:779–789

    PubMed  CAS  Google Scholar 

  • Mudge AW, Leeman SE, Fischbach GD (1979) Enkephalin inhibits release of substance P from sensory neurons in culture and decreases action potential duration. Proc Natl Acad Sci USA 76:526–530

    Article  PubMed  CAS  Google Scholar 

  • Nachshen DA (1984) Selectivity of the Ca binding site in synaptosome Ca channels. J Gen Physiol 83:941–967

    Article  PubMed  CAS  Google Scholar 

  • Narahashi T (1984) Pharmacology of nerve membrane sodium channels. In: Baker PF (ed) The squid axon. Academic, New York, pp 483–516 (Current topics in membranes and transport, vol 22)

    Google Scholar 

  • Narahashi T (1985) Nerve membrane ionic channels as the primary target of pyrethroids. Neurotoxicology 6:3–22

    PubMed  CAS  Google Scholar 

  • Narahashi T, Tsunoo A, Yoshii M (1987) Characterization of two types of calcium channels in mouse neuroblastoma cells. J Physiol (Lond) 383:231–249

    CAS  Google Scholar 

  • North RA (1979) Opiates, opioid peptides and single neurones. Life Sci 24:1527–1546

    Article  PubMed  CAS  Google Scholar 

  • North RA, Williams JT (1983) Opiate activation of potassium conductance inhibits calcium action potentials in rat locus coeruleus neurones. Br J Pharmacol 80:225–228

    PubMed  CAS  Google Scholar 

  • North RA, Williams JT (1985) On the potassium conductance increased by opioids in rat locus coeruleus neurones. J Physiol (Lond) 364:265–280

    CAS  Google Scholar 

  • North RA, Katayama Y, Williams JT (1979) On the mechanism and site of action of enkephalin on single myenteric neurons. Brain Res 165:67–77

    Article  PubMed  CAS  Google Scholar 

  • Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316:440–443

    Article  PubMed  CAS  Google Scholar 

  • Ohmori H, Yoshii M (1977) Surface potential reflected in both gating and permeation mechanisms of sodium and calcium channels of the tunicate egg cell membrane. J Physiol (Lond) 267:429–463

    CAS  Google Scholar 

  • Pappone PA, Cahalan MD (1986) Ion permeation in cell membranes. In: Andreoli TE, Hoffman JF, Franestil DD, Schultz SG (eds) Physiology of membrane disorders. Plenum, New York, pp 249–272

    Chapter  Google Scholar 

  • Pincus JH, Lee SH (1973) Diphenylhydantoin and calcium. Relation to norepinephrine release from brain slices. Arch Neurol 29:239–244

    Article  PubMed  CAS  Google Scholar 

  • Quandt FN, Narahashi T (1980) Internal perfusion of neuroblastoma cells and the effects of diphenylhydantoin on voltage-dependent currents. Soc Neurosci Abstr 6:97

    Google Scholar 

  • Quandt FN, Narahashi T (1984) Isolation and kinetic analysis of inward currents in neuroblastoma cells. Neuroscience 13:249–262

    Article  PubMed  CAS  Google Scholar 

  • Reuter H (1979) Properties of two inward membrane currents in the heart. Annu Rev Physiol 41:413–424

    Article  PubMed  CAS  Google Scholar 

  • Reuter H (1983) Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301:569–574

    Article  PubMed  CAS  Google Scholar 

  • Scheuer T, Kass RS (1983) Phenytoin reduces calcium current in the cardiac Purkinje fiber. Circ Res 53:16–23

    PubMed  CAS  Google Scholar 

  • Skerritt JH, Macdonald RL (1984) Multiple actions of convulsant barbiturates on mouse neurons in cell culture. J Pharmacol Exp Ther 230:82–88

    PubMed  CAS  Google Scholar 

  • Sohn RS, Ferrendelli JA (1973) Inhibition of Ca2+ transport into rat brain synaptosomes by diphenylhydantoin (DPH). J Pharmacol Exp Ther 185:272–275

    PubMed  CAS  Google Scholar 

  • Tillotson D (1979) Inactivation of Ca conductance dependent on entry of Ca ions in mol-luscan neurons. Proc Natl Acad Sci USA 76:1497–1500

    Article  PubMed  CAS  Google Scholar 

  • Tokimasa T, Morita K, North A (1981) Opiates and Clonidine prolong calcium-dependent after-hyperpolarizations. Nature 294:162–163

    Article  PubMed  CAS  Google Scholar 

  • Triggle DJ (1981) Calcium antagonists: basic chemical and pharmacological aspects. In: Weiss GB (ed) New perspectives on calcium antagonists. Waverly, Baltimore, pp 1–18

    Google Scholar 

  • Tsien RW (1983) Calcium channels in excitable cell membranes. Annu Rev Physiol 45:341–358

    Article  PubMed  CAS  Google Scholar 

  • Tsunoo A, Yoshii M, Narahashi T (1986) Block of calcium channels by enkephalin and somatostatin in neuroblastoma-glioma hybrid NG108–15 cells. Proc Natl Acad Sci USA 83:9832–9836

    Article  PubMed  CAS  Google Scholar 

  • Twombly D, Narahashi T (1985) Phenytoin suppresses calcium currents in neuroblastoma cells. Soc Neurosci Abstr 11:518

    Google Scholar 

  • Werz MA, Macdonald RL (1982 a) Opioid peptides decrease calcium-dependent action potential duration of mouse dorsal root ganglion neurons in cell culture. Brain Res 239:315–321

    Article  PubMed  CAS  Google Scholar 

  • Werz MA, Macdonald RL (1982 b) Heterogeneous sensitivity of cultured dorsal root ganglion neurones to opioid peptides selective for μ- and δ-opiate receptors. Nature 299:730–733

    Article  PubMed  CAS  Google Scholar 

  • Werz MA, Macdonald RL (1983 a) Opioid peptides with differential affinity for mu- and delta-receptors decrease sensory neuron calcium-dependent action potentials. J Pharmacol Exp Ther 227:394–402

    PubMed  CAS  Google Scholar 

  • Werz MA, Macdonald RL (1983 b) Opioid peptides selective for mu- and delta-opiate receptors reduce calcium-dependent action potential duration by increasing potassium conductance. Neurosci Lett 42:173–178

    Article  PubMed  CAS  Google Scholar 

  • Werz MA, Macdonald RL (1984) Dynorphin reduces voltage-dependent conductance of mouse dorsal root ganglion neurons. Neuropeptide 5:253–256

    Article  CAS  Google Scholar 

  • Werz MA, Macdonald RL (1985) Dynorphin and neoendorphin peptides decrease dorsal root ganglion neuron calcium-dependent action potential duration. J Pharmacol Exp Ther 234:49–56

    PubMed  CAS  Google Scholar 

  • Williams JT, North RA (1983) Opiate activation of GK inhibits calcium spikes in rat locus coeruleus. Soc Neurosci Abstr 9:1130

    Google Scholar 

  • Wouters W, van den Bercken J (1980) Effects of met-enkephalin on slow synaptic inhibition in frog sympathetic ganglion. Neuropharmacology 19:237–243

    Article  PubMed  CAS  Google Scholar 

  • Yaksh TL, Noueihed R (1985) The physiology and pharmacology of spinal opiates. Annu Rev Pharmacol Toxicol 25:433–462

    Article  PubMed  CAS  Google Scholar 

  • Yoshii M, Tsunoo A, Narahashi T (1985 a) Different properties in two types of calcium channels in neuroblastoma cells. Biophys J 47:433a

    Google Scholar 

  • Yoshii M, Tsunoo A, Narahashi T (1985 b) Effects of pyrethroids and veratridine on two types of Ca channels in neuroblastoma cells. Soc Neurosci Abstr 11:518

    Google Scholar 

  • Yoshimura M, North RA (1983) Hyperpolarization of substantia gelatinosa neurons in vitro by enkephalin and noradrenaline. Soc Neurosci Abstr 9:1129

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Narahashi, T. (1988). Drugs Acting on Calcium Channels. In: Baker, P.F. (eds) Calcium in Drug Actions. Handbook of Experimental Pharmacology, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71806-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71806-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71808-3

  • Online ISBN: 978-3-642-71806-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics