Skip to main content

Effect of Lithium in Stimulus — Response Coupling

  • Chapter
Calcium in Drug Actions

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 83))

Abstract

Questions on the mode of intracellular action of Li+ have attracted special interest because of its therapeutic effects in manic-depressive illness. The original report of control and prevention of mania by Li+ salts (Cade 1949) initiated widespread use of Li+ for this illness. Since Li+ is most effective in reducing the mood swings of bipolar manic-depressive patients, patients suffering from this disease often take Li+ for the rest of their lives (W. R. Sherman 1986, personal communication). The mode of Li+ action in these patients is not yet clear, although many different functions of Li+ on ion transport systems, enzymes, synaptic transmission, and receptor sensitivity have been described (Emrich et al. 1982) from which a hypothesis has emerged that Li+ modulates central nervous activity by influencing receptor-mediated phosphoinositide metabolism — and consequently also Ca2+ mobilization and control of Ca2+-dependent neurosecretion (Berridge et al. 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Latif AA, Akhtar RA, Hawthorne JN (1977) Acetylcholine increases the breakdown of triphosphoinositide of rabbit iris muscle prelabelled with (32P)phosphate. Bio-chem J 162:61–73

    CAS  Google Scholar 

  • Ackermann KE; Gigh BG, Honchar MP, Sherman WR (1987) Evidence that inositol 1-phosphate in brain of lithium-treated rats results mainly from phosphatidyl-inositol metabolism. Biochem J 242:517–524

    PubMed  CAS  Google Scholar 

  • Agranoff BW, Bradley RM, Brady RO (1958) The enzymatic synthesis of inositol phosphatide. J Biol Chem 233:1077–1083

    PubMed  CAS  Google Scholar 

  • Akhtar RA, Abdel-Latif AA (1980) Requirement for calcium ions in acetylcholine-stimulated phosphodiesteratic cleavage of phosphatidyl-myoinositol 4,5-bisphosphate in rabbit iris smooth muscle. Biochem J 192:783–791

    PubMed  CAS  Google Scholar 

  • Aldenhoff JP, Lux HD (1982) Effects of lithium on calcium-dependent membrane properties and on intracellular calcium-concentration in helix neurons. In: Emrich HM, Aldenhoff JB, Lux HD (eds) Basic mechanisms in the action of lithium. Excerpta Medica, Amsterdam, pp 50–63

    Google Scholar 

  • Allan D, Michell RH (1977) A comparison of the effects of phytohaemagglutinin and of calcium ionophore A23187 on the metabolism of glycerolipids in small lymphocytes. Biochem J 164:389–397

    PubMed  CAS  Google Scholar 

  • Allison JH (1978) Lithium and brain myo-inositol metabolism. In: Wells WW, Eisenberg F Jr (eds) Cyclitols and phosphoinositides. Academic, New York, pp 507–519

    Google Scholar 

  • Allison JH, Stewart MA (1971) Reduced brain inositol in lithium-treated rats. Nature 233:267–268

    CAS  Google Scholar 

  • Allison JH, Blisner ME, Holland WH, Hipps PP, Sherman WR (1976) Increased brain myo-inositol 1-phosphate in lithium-treated rats. Biochem Biophys Res Commun 71:664–670

    PubMed  CAS  Google Scholar 

  • Araki T, Ito M, Kostyuk PG, Oscarsson O, Oshima T (1965) The effects of alkaline cations on the responses of cat spinal motoneurons, and their removal from the cells. Proc R Soc Lond [Biol] 162:319–332

    CAS  Google Scholar 

  • Arato M, Rihmer Z, Felszeghy K (1980) Reduced plasma cyclic AMP level during prophylactic lithium treatment in patients with affective disorder. Biol Psychiatry 15:319–322

    PubMed  CAS  Google Scholar 

  • Argent BE, Case RM, Scratcherd T (1973) Amylase secretion by the perfused cat pancreas in relation to the secretion of calcium and other electrolytes and as influenced by the external ionic environment. J Physiol (Lond) 230:575–593

    CAS  Google Scholar 

  • Aub DL, Putney JW Jr (1984) Metabolism of inositol phosphates in parotid cells: implications for the pathway of the phosphoinositide effect and for the possible messenger role of inositol trisphosphate. Life Sci 34:1347–1355

    PubMed  CAS  Google Scholar 

  • Authi KS, Crawford N (1985) Inositol 1,4,5-trisphosphate-induced release of sequestered Ca2+ from highly purified human platelet intracellular membranes. Biochem J 230:247–253

    PubMed  CAS  Google Scholar 

  • Authi KS, Evenden BJ, Crawford N (1986) Metabolic and functional consequences of introducing inositol 1,4,5-trisphosphate into saponin-permeabilized human platelets. Biochem J 233:709–718

    Google Scholar 

  • Baker PF (1972) Transport and metabolism of calcium ions in nerve. Prog Biophys Mol Biol 24:177–223

    PubMed  CAS  Google Scholar 

  • Baker PF, McNaughton PA (1978) The influence of extracellular calcium binding on the calcium efflux from squid axons. J Physiol (Lond) 276:127–150

    CAS  Google Scholar 

  • Baker PF, Schlaepfer WW (1978) Uptake and binding of calcium by axoplasm isolated from giant axons of loligo and myxicola. J Physiol (Lond) 276:103–125

    CAS  Google Scholar 

  • Balk SD, Morisi A, Gunther HS (1984) Phorbol 12-myristate 13-acetate, ionomycin or ouabain, and raised extracellular magnesium induce proliferation of chicken heart mesenchymal cells. Proc Natl Acad Sci USA 81:6418–6421

    PubMed  CAS  Google Scholar 

  • Bansal VS, Inhorn RC, Majerus PW (1987) The metabolism of inositol 1,3,4-trisphosphate to inositol 1,3-biphosphate. J Biol Chem 262:9444–9447

    PubMed  CAS  Google Scholar 

  • Batty I, Nahorski SR (1985) Differential effects of lithium on muscarinic receptor stimulation of inositol phosphates in rat cerebral cortex slices. J Neurochem 45:1514–1521

    PubMed  CAS  Google Scholar 

  • Batty IR, Nahorski SR, Irvine RF (1985) Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices. Biochem J 232:211–215

    PubMed  CAS  Google Scholar 

  • Bayerdörffer E, Haase W, Schulz I (1985) Na+/Ca2+ countertransport in plasma membrane of rat pancreatic acinar cells. J Membr Biol 87:107–119

    PubMed  Google Scholar 

  • Berridge MJ (1975) Control of cell division: a unifying hypothesis. J Cyclic Nucleotide Res 1:305–320

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1983) Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem J 212:849–858

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1984) Inositol trisphosphate and diacylglycerol as second messengers. Biochem J 220:345–360

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Downes CP, Hanley MR (1982) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J 206:587–595

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Buchan PB, Heslop JP (1984 a) Relationship of polyphosphoinositide metabolism to the activation of the insect salivary gland by 5-hydroxytryptamine. Mol Cell Endocrinol 36:37–42

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Heslop JP, Irvine RF, Brown KD (1984 b) Inositol trisphosphate formation and calcium mobilization in Swiss 3T3 cells in response to platelet-derived growth factor. Biochem J 222:195–201

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Heslop JP, Irvine RF, Brown KD (1985) Inositol lipids and cell proliferation. Biochem Soc Trans 13:67–71

    PubMed  CAS  Google Scholar 

  • Bindler EH, Wallach MB, Gershon S (1971) Effect of lithium on the release of 14C-norepinephrine by nerve stimulation from the perfused cat spleen. Arch Int Pharmacodyn Ther 190:150–154

    PubMed  CAS  Google Scholar 

  • Blaustein MP (1974) The interrelationship between sodium and calcium fluxes across cell membranes. Rev Physiol Biochem Pharmacol 70:33–82

    PubMed  CAS  Google Scholar 

  • Blumberg PM, Jaken S, König B, Sharkey NA, Leach KL, Jeng AY, Yeh E (1984) Mechanism of action of the phorbol ester tumor promoters: specific receptors for lipophilic ligands. Biochem Pharmacol 33:933–940

    PubMed  CAS  Google Scholar 

  • Blumenthal DK, Stull JT (1980) Activation of skeletal muscle myosin light chain kinase by calcium and calmodulin. Biochemistry 19:5608–5614

    PubMed  CAS  Google Scholar 

  • Boynton AL, Whitfield JF, Isaacs RJ, Morton HJ (1974) Control of 3T3 cell proliferation by calcium. In Vitro 10:12–17

    PubMed  CAS  Google Scholar 

  • Brockerhoff H, Ballou CE (1962) Phosphate incorporation in brain phosphoinositides. J Biol Chem 237:49–52

    PubMed  CAS  Google Scholar 

  • Brown JE, Rubin LJ, Ghalayini AJ, Tarver AP, Irvine RF, Berridge MJ, Anderson RE (1984) Myo-inositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors. Nature 311:160–162

    PubMed  CAS  Google Scholar 

  • Burgess GM, Godfrey PP, McKinney JS, Berridge MJ, Irvine RF, Putney JW Jr (1984) The second messenger linking receptor activation to internal Ca2+ release in liver. Nature 309:63–66

    PubMed  CAS  Google Scholar 

  • Burgess GM, McKinney JS, Irvine RF, Putney JW Jr (1985) Inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate formation in Ca2+ -mobilizing-hormone-activated cells. Biochem J 232:237–243

    PubMed  CAS  Google Scholar 

  • Cade JFJ (1949) Lithium salts in the treatment of psychotic excitement. Med J Aust 2:349–352

    PubMed  CAS  Google Scholar 

  • Case RM, Clausen T (1973) The relationship between calcium exchange and enzyme secretion in the isolated rat pancreas. J Physiol (Lond) 235:75–102

    CAS  Google Scholar 

  • Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y (1982) Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor promoting phorbol esters. J Biol Chem 257:7847–7851

    PubMed  CAS  Google Scholar 

  • Clemente F, Meldolesi J (1975) Calcium and pancreatic secretion-dynamics of subcellular calcium pools in resting and stimulated acinar cells. Br J Pharmacol 55:369–379

    PubMed  CAS  Google Scholar 

  • Connolly TM, Bross TE, Majerus PW (1985) Isolation of a Phosphomonoesterase from human platelets that specifically hydrolyzes the 5-phosphate of inositol 1,4,5-trisphosphate. J Biol Chem 260:7868–7874

    PubMed  CAS  Google Scholar 

  • Corrodi H, Fuxe K, Hökfelt T, Schou M (1967) The effect of lithium on cerebral monoamine neurons. Psychopharmacologia 11:345–353

    PubMed  CAS  Google Scholar 

  • Crumpton MJ, Allan D, Auger J, Green NM, Maino VC (1975) Recognition at cell surfaces: PHA-lymphocyte interaction. Philos Trans R Soc Lond [Biol] 272:123–180

    Google Scholar 

  • Dawson AP, Irvine RF (1984) Inositol (1,4,5) trisphosphate-promoted Ca2+ release from microsomal fractions of rat liver. Biochem Biophys Res Commun 120:858–864

    PubMed  CAS  Google Scholar 

  • Dicker P, Rozengurt E (1981) Phorbol ester stimulation of Na influx and Na-K pump activity in Swiss 3T3 cells. Biochem Biophys Res Commun 100:433–441

    PubMed  CAS  Google Scholar 

  • Diringer H, Friis RR (1977) Changes in phosphatidylinositol metabolism correlated to growth state of normal and Rous sarcoma virus-transformed Japanese quail cells. Cancer Res 37:2979–2984

    PubMed  CAS  Google Scholar 

  • Doolittle RF, Hunkapiller MW, Hood LE, Devare SG, Robbins KC, Aaronson SA, Antoniades HN (1983) Simian sarcoma virus one gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science 221:275–277

    PubMed  CAS  Google Scholar 

  • Dose M, Emrich HM (1986) Calcium antagonistic properties of antimanic compounds. In: Heinemann U, Klee M, Neher E, Singer W (eds) Calcium electrogenesis and neuronal function. Springer, Berlin Heidelberg New York (Experimental brain research, series 14)

    Google Scholar 

  • Douglas WW (1974) Exocytosis and the exocytosis-vesiculation sequence: with special reference to neurohypophysis, chromaffin and mast cells, calcium and calcium ionophore. In: Thorn NA, Petersen OH (eds) Secretory mechanisms of exocrine glands. Academic, New York, pp 116–129

    Google Scholar 

  • Douglas WW, Poisner AM (1964) Stimulus-secretion coupling in a neurosecretory organ: the role of calcium in the release of vasopressin from the neurohypophysis. J Physiol (Lond) 172:1–18

    CAS  Google Scholar 

  • Dousa TP (1974) Interaction of lithium with vasopressin-sensitive cyclic AMP system of human renal medulla. Endocrinology 95:1359–1366

    PubMed  CAS  Google Scholar 

  • Downes CP, Stones MA (1986) Lithium-induced reduction in intracellular inositol supply in cholinergically stimulated parotid gland. Biochem J 234:199–204

    PubMed  CAS  Google Scholar 

  • Downes CP, Wusteman MM (1983) Breakdown of polyphosphoinositides and not phosphatidylinositol accounts for muscarinic agonist-stimulated inositol phospholipid metabolism in rat parotid glands. Biochem J 216:633–640

    PubMed  CAS  Google Scholar 

  • Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, Ullrich A, Schlessinger J, Waterfield MD (1984) Close similarity of epidermal growth factor receptor and verb-B oncogene protein sequences. Nature 307:521–527

    PubMed  CAS  Google Scholar 

  • Drummond AH, Raeburn CA (1984) The interaction of lithium with thyrotropin-releasing hormone-stimulated lipid metabolism in GH3 pituitary tumour cells. Enhancement of stimulated 1,2-diacylglycerol formation. Biochem J 224:129–136

    PubMed  CAS  Google Scholar 

  • Dubovsky SL, Franks RD, Lifschitz M, Coen P (1982) Effectiveness of verapamil in the treatment of a manic patient. Am J Psychiatry 139:502–504

    PubMed  CAS  Google Scholar 

  • Duhm J, Becker BF (1977) Studies in the lithium transport across the red cell membrane. II. Characterization of ouabain-sensitive and ouabain insensitive Li+ transport. Effects of bicarbonate and dipyridamole. Pflügers Arch 367:211–219

    PubMed  CAS  Google Scholar 

  • Duhm J, Eisenried F, Becker BF, Greil W (1976) Studies on the lithium transport across the red cell membrane. I. Li+ uphill transport by the Na+-dependent Li+ counter-transport system of human erythrocytes. Pflügers Arch 364:147–155

    PubMed  CAS  Google Scholar 

  • Durell J, Garland JT (1969) Acetylcholine-stimulated phosphodiesteratic cleavage of phosphoinositides: hypothetical role in membrane depolarization. Ann NY Acad Sci 165:743–754

    PubMed  CAS  Google Scholar 

  • Durell J, Sodd MA, Friedel RO (1968) Acetylcholine stimulation of the phosphodiesteratic cleavage of guinea pig brain phosphoinositides. Life Sci 7:363–368

    PubMed  CAS  Google Scholar 

  • Durell J, Garland JT, Friedel RO (1969) Acetylcholine action: biochemical aspects. Science 165:862–866

    PubMed  CAS  Google Scholar 

  • Emrich HM, Aldenhoff JB, Lux HD (eds) (1982) Basic mechanisms in the action of lithium. Excerpta Medica, Amsterdam

    Google Scholar 

  • Epel D (1978) Mechanisms of activation of sperm and egg during fertilization of sea urchin gametes. Topics Dev Biol 12:185–246

    CAS  Google Scholar 

  • Evers J, Murer H, Kinne R (1976) Phenylalanine uptake in isolated renal brush border vesicles. Biochim Biophys Acta 426:598–615

    PubMed  CAS  Google Scholar 

  • Extein I, Tallman J, Smith CC, Goodwin FK (1979) Changes in lymphocyte beta-adrenergic receptors in depression and mania. Psychiatry Res 1:191–197

    PubMed  CAS  Google Scholar 

  • Fisher DB, Mueller GC (1968) An early alteration in the phospholipid metabolism of lymphocytes by phytohemagglutinin. Proc Natl Acad Sci USA 60:1396–1402

    PubMed  CAS  Google Scholar 

  • Fisher DB, Mueller GC (1971) Studies on the mechanism by which phytohemagglutin rapidly stimulates phospholipid metabolism of human lymphocytes. Biochim Biophys Acta 248:434–448

    CAS  Google Scholar 

  • Forn J, Valdecasas FG (1971) Effects of lithium on brain adenylate cyclase activity. Biochem Pharmacol 20:2773–2778

    PubMed  CAS  Google Scholar 

  • Geck P, Pietrzyk C, Burckhardt BC, Pfeiffer B, Heinz E (1980) Electrically silent cotransport of Na+, K+ and Cl- in Ehrlich cells. Biochim Biophys Acta 600:432–447

    PubMed  CAS  Google Scholar 

  • Geisler A, Klysner R, Andersen PH (1985) Influence of lithium in vitro and in vivo on the catecholamine-sensitive cerebral adenylate cyclase systems. Acta Pharmacol Toxicol 56 [Suppl l]:80–97

    CAS  Google Scholar 

  • Gelfand EW, Dosch HM, Hastings D, Shore A (1979) Lithium: a modulator of cyclic AMP-dependent events in lymphocytes? Science 203:365–367

    PubMed  CAS  Google Scholar 

  • Greene WC, Parker CM, Parker CW (1976) Calcium and lymphocyte activation. Cell Immunol 25:74–89

    PubMed  CAS  Google Scholar 

  • Greenspan K, Aronoff MS, Bogdanski DF (1970) Effects of lithium carbonate on turnover and metabolism of norepinephrine in rat brain-correlation to gross behavioral effects. Pharmacology 3:129–136

    CAS  Google Scholar 

  • Haas M, Schooler J, Tosteson DC (1975) Coupling of lithium to sodium transport in human red cells. Nature 258:425–427

    PubMed  CAS  Google Scholar 

  • Habenicht AJR, Glomset JA, King WC, Nist C, Mitchell CD, Ross R (1981) Early changes in phosphatidylinositol and arachidonic acid metabolism in quiescent Swiss 3T3 cells stimulated to divide by platelet-derived growth factor. J Biol Chem 256:12329–12335

    PubMed  CAS  Google Scholar 

  • Hallcher LM, Sherman WR (1980) The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J Biol Chem 255:10896–10901

    PubMed  CAS  Google Scholar 

  • Hargreaves LNMcF, Hayes PC (1978) The influence of lithium and calcium ions on the aggregation of human blood platelets. Thromb Res 13:79–83

    PubMed  CAS  Google Scholar 

  • Hart DA (1979) Potentiation of phytohemagglutinin stimulation of lymphoid cells by lithium. Exp Cell Res 119:47–53

    PubMed  CAS  Google Scholar 

  • Hasegawa-Sasaki H, Sasaki T (1983) Phytohemagglutinin induces rapid degradation of phosphatidylinositol 4,5-bisphosphate and transient accumulation of phosphatidic acid and diacylglycerol in a human T lymphoblastoid cell line, CCRF-CEM. Biochim Biophys Acta 754:305–314

    PubMed  CAS  Google Scholar 

  • Heisler S, Fast D, Tenenhouse A (1972) Role of Ca2+ and cyclic AMP in protein secretion from rat exocrine pancreas. Biochim Biophys Acta 279:561–572

    PubMed  CAS  Google Scholar 

  • Heisler S, Reisine TD, Hook VYH, Axelrod J (1982) Somatostatin inhibits multireceptor Stimulation of cyclic AMP formation and corticotropin secretion in mouse pituitary tumor cells. Proc Natl Acad Sci USA 79:6502–6506

    PubMed  CAS  Google Scholar 

  • Hellmessen W, Christian AL, Fasold H, Schulz I (1985) Coupled Na+-H+ exchange in isolated acinar cells from rat exocrine pancreas. Am J Physiol 249:G125–G136

    PubMed  CAS  Google Scholar 

  • Hille B (1970) Ionic channels in nerve membranes. Prog Biophys Mol Biol 21:1–32

    PubMed  CAS  Google Scholar 

  • Hirata M, Suematsu E, Hashimoto T, Hamachi T, Koga T (1984) Release of Ca2+ from a non-mitochondrial store site in peritoneal macrophages treated with saponin by inositol 1,4,5-trisphosphate. Biochem J 223:229–236

    PubMed  CAS  Google Scholar 

  • Hoffmann R, Ristow HJ, Pachowsky H, Frank W (1974) Phospholipid metabolism in embryonic rat fibroblasts following stimulation by a combination of the serum proteins S1 and S2. Eur J Biochem 49:317–324

    PubMed  CAS  Google Scholar 

  • Hokin LE (1966) Effects of calcium omission on acetylcholine-stimulated amylase secretion and phospholipid synthesis in pigeon pancreas slices. Biochem Biophys Acta 115:219–221

    PubMed  CAS  Google Scholar 

  • Hokin LE, Hokin MR (1955) Effects of acetylcholine on the turnover of phosphoryl units in individual phospholipids of pancreas slices and brain cortex slices. Biochim Biophys Acta 18:102–110

    PubMed  CAS  Google Scholar 

  • Hokin LE, Hokin MR (1956) The actions of pancreozymin in pancreas slices and the role of phospholipids in enzyme secretion. J Physiol (Lond) 132:442–453

    CAS  Google Scholar 

  • Hokin LE, Hokin MR (1958 a) Phosphoinositides and protein secretion in pancreas slices. J Biol Chem 233:805–810

    PubMed  CAS  Google Scholar 

  • Hokin LE, Hokin MR (1958 b) Acetylcholine and the exchange of inositol and phosphate in brain phosphoinositide. J Biol Chem 233:818–821

    PubMed  CAS  Google Scholar 

  • Hokin MR, Hokin LE (1953) Enzyme secretion and the incorporation of 32P into phospholipids of pancreas slices. J Biol Chem 203:967–977

    PubMed  CAS  Google Scholar 

  • Hokin MR, Hokin LE (1959) The synthesis of phosphatidic acid from diglyceride and adenosine triphosphate in extracts of brain microsomes. J Biol Chem 234:1381–1386

    PubMed  CAS  Google Scholar 

  • Hokin MR, Hokin LE (1964) Interconversions of phosphatidylinositol and phosphatidic acid involved in the response to acetylcholine in the salt gland. In: Dawson RMC, Rhodes DN (eds) Metabolism and physiological significance of lipids. Wiley, New York, pp 423–434

    Google Scholar 

  • Hokin MR, Hokin LE (1967) The formation and continuous turnover of a fraction of phosphatidic acid on stimulation of NaCl secretion by acetylcholine in the salt gland. J Gen Physiol 50:793–811

    PubMed  CAS  Google Scholar 

  • Honchar MP, Olney JW, Sherman WR (1983) Systemic cholinergic agents induce seizures and brain damage in lithium-treated rats. Science 220:323–325

    PubMed  CAS  Google Scholar 

  • Hori C, Oka T (1979) Induction by lithium ion of multiplication of mouse mammary epithelium in culture. Proc Natl Acad Sci USA 76:2823–2827

    PubMed  CAS  Google Scholar 

  • Inhorn RC, Bansal VS, Majerus PW (1987) Pathways for inositol 1,3,4-trisphosphate and 1,4-bisphosphate metabolism. Proc Natl Acad Sci USA 84:2170–2174

    PubMed  Google Scholar 

  • Irvine RF, Lander DJ, Letcher AJ, Downes CP (1984 b) Inositol trisphosphates in carbachol-stimulated rat parotid glands. Biochem J 223:237–245

    PubMed  CAS  Google Scholar 

  • Irvine RF, Änggård EE, Letcher AJ, Downes CP (1985) Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands. Biochem J 229:505–511

    PubMed  CAS  Google Scholar 

  • Irvine RF, Letcher AJ, Heslop JP, Berridge MJ (1986) The inositol tris/tetrakis phosphate pathway-demonstration of inositol (1,4,5) trisphosphate-3-kinase activity in animal tissues. Nature 320:631–634

    PubMed  CAS  Google Scholar 

  • Irvine RF, Letcher AJ, Lander DJ, Berridge MJ (1986) Specificity of inositol phosphate-stimulated Ca2+ mobilization from Swiss-mouse 3T3 cells. Biochem J 240:301–304

    PubMed  CAS  Google Scholar 

  • Irvine RF, Moor RM (1986) Micro-injection of inositol 1,3,4,5-tetrabisphosphate activates gea urchin eggs by a mechanism dependent on external Ca2+. Biochem J 240:917–920

    PubMed  CAS  Google Scholar 

  • Joseph SK, Williams RJ (1985) Subcellular localization and some properties of the enzymes hydrolysing inositol polyphosphates in rat liver. FEBS Lett 180:150–154

    PubMed  CAS  Google Scholar 

  • Kanno T (1972) Calcium-dependent amylase release and electrophysiological measurements in cells of the pancreas. J Physiol (Lond) 226:353–371

    CAS  Google Scholar 

  • Katz B, Miledi R (1967) The timing of calcium action during neuromuscular transmission. J Physiol (Lond) 189:535–544

    CAS  Google Scholar 

  • Katz RI, Kopin IJ (1969) Release of norepinephrine-3H and serotonin-3H evoked from brain slices by electrical-field stimulation-calcium dependency and the effects of lithium, ouabain and tetrodotoxin. Biochem Pharmacol 18:1935–1939

    CAS  Google Scholar 

  • Katz RI, Chase TN, Kopin IJ (1968) Evoked release of norepinephrine and serotonin from brain slices: inhibition by lithium. Science 162:466–467

    PubMed  CAS  Google Scholar 

  • Kendall DA, Nahorski SR (1985) 5-Hydroxytryptamine-stimulated inositol phospholipid hydrolysis in rat cerebral cortex slices: pharmacological characterization and effects of antidepressants. J Pharmacol Exp Ther 233:473–479

    PubMed  CAS  Google Scholar 

  • Keynes RD, Swan RC (1959 a) The effect of external sodium concentration on the sodium fluxes in frog skeletal muscle. J Physiol (Lond) 147:591–625

    CAS  Google Scholar 

  • Keynes RD, Swan RC (1959 b) The permeability of frog muscle fibers to lithium ions. J Physiol (Lond) 147:626–638

    CAS  Google Scholar 

  • Lykouras E, Varsou E, Garelis E, Stefanis CN, Maliaras D (1978) Plasma cyclic AMP in manic-depressive illness. Acta Psychiatr Scand 57:447–453

    PubMed  CAS  Google Scholar 

  • Lykouras E, Garelis E, Varsou E, Stefanis CN (1979) Physical activity and plasma cyclic adenosine monophosphate levels in manic-depressive patients and healthy adults. Am J Psychiatry 136:540–542

    PubMed  CAS  Google Scholar 

  • Macara IG, Marinetti GV, Balduzzi PC (1984) Transforming protein of avian sarcoma virus UR2 is associated with phosphatidylinositol kinase activity: possible role in tu-morigenesis. Proc Natl Acad Sci USA 81:2728–2732

    PubMed  CAS  Google Scholar 

  • Mauger JP, Claret M (1986) Mobilization of intracellular calcium by glucagon and cyclic AMP analogues in isolated rat hepatocytes. FEBS Lett 195:106–110

    PubMed  CAS  Google Scholar 

  • Mendels J, Ramsey TA, Dyson WL, Frazer A (1979) Lithium as an antidepressant. In: Cooper TB, Gershon S, Kline NS, Schou M (eds) Lithium: controversies and unresolved issues. Excerpta Medica, Amsterdam, pp 35–47

    Google Scholar 

  • Metcalfe JC, Pozzan T, Smith GA, Hesketh TR (1980) A calcium hypothesis for the control of cell growth. Biochem Soc Symp 45:1–26

    PubMed  CAS  Google Scholar 

  • Michell B (1986) Inositol phosphates. Profusion and confusion. Nature 319:176–177

    PubMed  CAS  Google Scholar 

  • Michell RH (1975) Inositol lipids and cell surface receptor function. Biochim Biophys Acta 415:81–147

    PubMed  CAS  Google Scholar 

  • Michell RH (1982) Inositol lipid metabolism in dividing and differentiating cells. Cell Calcium 3:429–440

    PubMed  CAS  Google Scholar 

  • Michell RH, Kirk CJ, Jones LM, Downes CP, Creba JA (1981) The stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells: defined characteristics and unanswered questions. Philos Trans R Soc Lond Ser B 296:123–137

    CAS  Google Scholar 

  • Moolenaar WH, Tsien RY, van der Saag PT, de Laat SW (1983) Na+/H+ exchange and cytoplasmic pH in the action of growth factors in human fibroblasts. Nature 304:645–648

    PubMed  CAS  Google Scholar 

  • Murphy DL, Donelly C, Moskowitz J (1973) Inhibition by lithium of prostaglandin E1 and norepinephrine effects on cyclic adenosine monophosphate production in human platelets. Clin Pharmacol Ther 14:810–814

    PubMed  CAS  Google Scholar 

  • Nagel W (1977) Influence of lithium upon the intracellular potential of frog skin epithelium. J Membr Biol 37:347–359

    PubMed  CAS  Google Scholar 

  • Nielsen-Kudsk F, Pedersen AK (1978) Myocardial effects of lithium in vitro. Acta Pharmacol Toxicol 42:311–316

    CAS  Google Scholar 

  • O’Rourke FA, Halenda SP, Zavoico GB, Feinstein MB (1985) Inositol 1,4,5-trisphosphate releases Ca2+ from a Ca2+-transporting membrane vesicle fraction derived from human platelets. J Biol Chem 260:956–962

    PubMed  Google Scholar 

  • Overton E (1902) Beiträge zur allgemeinen Muskel- und Nervenphysiologie. II. Mitt. Über die Unentbehrlichkeit von Natrium- (oder Lithium) Ionen für den Contractionsact des Muskels. Pflügers Arch 92:346

    CAS  Google Scholar 

  • Pandey GN, Dysken MW, Garver DL, Davis JM (1979) Beta-adrenergic receptor function in affective illness. Am J Psychiatry 136:675–678

    PubMed  CAS  Google Scholar 

  • Paulus H, Kennedy EP (1960) The enzymatic synthesis of inositol monophosphatide. J Biol Chem 235:1303–1311

    PubMed  CAS  Google Scholar 

  • Petersen OH, Iwatsuki N (1978) The role of calcium in pancreatic acinar cell stimulus-secretion coupling: an electrophysiological approach. Ann NY Acad Sci 307:599–617

    CAS  Google Scholar 

  • Petersen OH, Ueda N (1976) Pancreatic acinar cells: the role of calcium in stimulus-secretion coupling. J Physiol (Lond) 254:583–606

    CAS  Google Scholar 

  • Pollard AD, Brindley DN (1984) Effects of vasopressin and corticosterone on fatty acid metabolism and on the activities of glycerol phosphate acyltransferase and phosphati-date phosphohydrolase in rat hepatocytes. Biochem J 217:461–469

    PubMed  CAS  Google Scholar 

  • Prentki M, Biden TJ, Janjic D, Irvine RF, Berridge MJ, Wollheim CB (1984) Rapid mobilization of Ca2+ from rat insulinoma microsomes by inositol-1,4,5-trisphosphate. Nature 309:562–564

    PubMed  CAS  Google Scholar 

  • Ptashne K, Stockdale FE, Conlon S (1980) Initiation of DNA synthesis in mammary epithelium and mammary tumors by lithium ions. J Cell Physiol 103:41–46

    PubMed  CAS  Google Scholar 

  • Rasmussen H, Barrett PQ (1984) Calcium messenger system: an integrated view. Physiol Rev 64:938–984

    PubMed  CAS  Google Scholar 

  • Richelson E (1977) Lithium ion entry through the sodium channel of cultured mouse neuroblastoma cells: a biochemical study. Science 196:1001–1002

    PubMed  CAS  Google Scholar 

  • Rink TJ (1977) The influence of sodium on calcium movements and catecholamine release in thin slices of bovine adrenal medulla. J Physiol (Lond) 266:297–325

    CAS  Google Scholar 

  • Ristow HJ, Frank W, Fröhlich M (1973) Stimulation of embryonic rat cells by calf serum. V. Metabolism of inositol- and choline phospholipids. Stimulierung von Kulturen embryonaler Rattenzellen durch Kälberserum. V. Verhalten der Inosit- und Cholinphospholipide. Z Naturforsch 28c: 188–194

    Google Scholar 

  • Robberecht P, Christophe J (1971) Secretion of hydrolases by perfused fragments of rat pancreas: effect of calcium. Am J Physiol 220:911–917

    PubMed  CAS  Google Scholar 

  • Rosenblatt JE, Pert CB, Tallman JF, Pert A, Bunney WE (1979) Effect of imipramine and lithium on alpha-receptor and beta-receptor binding in rat brain. Brain Res 160:186–191

    PubMed  CAS  Google Scholar 

  • Rosoff PM, Stein LF, Cantley LC (1984) Phorbol esters induce differentiation in a pre-B-lymphocyte cell line by enhancing Na+/H+ exchange. J Biol Chem 259:7056–7060

    PubMed  CAS  Google Scholar 

  • Rubin RP (1984) Stimulation of inositol trisphosphate accumulation and amylase secretion by caerulein in pancreatic acini. J Pharmacol Exp Ther 231:623–627

    PubMed  CAS  Google Scholar 

  • Ryback SM, Stockdale FE (1981) Growth effects of lithium chloride in BALB/c 3T3 fibroblasts and Madin-Darby canine kidney epithelial cells. Exp Cell Res 136:263–270

    Google Scholar 

  • Santiago-Calvo E, Mule S, Redman CM, Hokin MR, Hokin LE (1964) The chromatographic separation of polyphosphoinositides and studies in their turnover in various tissues. Biochim Biophys Acta 84:550–562

    PubMed  CAS  Google Scholar 

  • Sawyer ST, Cohen S (1981) Enhancement of calcium uptake and phosphatidylinositol turnover by epidermal growth factor in A-431 cells. Biochemistry 20:6280–6286

    PubMed  CAS  Google Scholar 

  • Schneyer CA (1974) Autonomic regulation of secretory activity and growth responses of rat parotid gland. In: Thorn NA, Petersen OH (eds) Secretory mechanisms of exocrine glands. Munksgaard, Copenhagen, pp 42–55

    Google Scholar 

  • Schreurs VVAM, Swarts HGP, De Pont JJHHM, Bonting SL (1976) Role of calcium in exocrine pancreatic secretion. II. Comparison of the effects of carbachol and the ionophore A-23187 on enzyme secretion and calcium movements in rabbit pancreas. Biochim Biophys Acta 419:320–330

    PubMed  CAS  Google Scholar 

  • Schulz I (1980) Messenger role of calcium in function of pancreatic acinar cells. Am J Physiol 239:G335–G347

    PubMed  CAS  Google Scholar 

  • Sekar MC, Roufogalis BD (1984 a) Differential effects of phenylmethanesulfonyl fluoride (PMSF) on carbachol and potassium stimulated phosphoinositide turnover and contraction in longitudinal smooth muscle of guinea pig ileum. Cell Calcium 5:191–203

    PubMed  CAS  Google Scholar 

  • Sekar MC, Roufogalis BD (1984 b) Muscarinic-receptor stimulation enhances polyphosphoinositide breakdown in guinea-pig ileum smooth muscle. Biochem J 223:527–531

    PubMed  CAS  Google Scholar 

  • Sherman WR, Leavitt AL, Honchar MP, Hallcher L, Phillips BE (1981) Evidence that lithium alters phosphoinositide metabolism: chronic administration elevates primarily d-myo-inositol-1-phosphate in cerebral cortex of the rat. J Neurochem 36:1947–1951

    PubMed  CAS  Google Scholar 

  • Sherman WR, Honchar MP, Munsell LY (1985 a) Detection of receptor-linked phosphoinositide metabolism in brain of lithium-treated rats. In: Bleasdale JE, Eichberg J, Hauser G (eds) Cyclitols and phosphoinositides, vol 49. Humana, New York

    Google Scholar 

  • Sherman WR, Munsell LY, Gish BG, Honchar MP (1985 b) Effects of systemically administered lithium on phosphoinositide metabolism in rat brain, kidney, and testis. J Neurochem 44:798–807

    PubMed  CAS  Google Scholar 

  • Sillers PJ, Forer A (1985) Ca++ in fertilization and mitosis: the phosphatidylinositol cycle in sea urchin gametes and zygotes is involved in control of fertilization and mitosis. Cell Biol Int Rep 9:275–282

    PubMed  CAS  Google Scholar 

  • Stern DN, Fieve RR, Neff NH, Costa E (1969) The effect of lithium chloride administration on brain and heart norepinephrine turnover rates. Psychopharmacologia 14:315–322

    PubMed  CAS  Google Scholar 

  • Stolze H, Schulz I (1980) Effect of atropine, ouabain, antimycin A and A23187 on “trigger Ca2+ pool” in exocrine pancreas. Am J Physiol 238:G318–G348

    Google Scholar 

  • Storey DJ, Shears SB, Kirk CJ, Michell RH (1984) Stepwise enzymatic dephosphorylation of inositol 1,4,5-trisphosphate to inositol in liver. Nature 312:374–376

    PubMed  CAS  Google Scholar 

  • Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306:67–69

    PubMed  CAS  Google Scholar 

  • Streb H, Bayerdörffer E, Haase W, Irvine RF, Schulz I (1984) Effect of inositol-1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas. J Membr Biol 81:241–253

    PubMed  CAS  Google Scholar 

  • Suematsu E, Hirata M, Hashimoto T, Kuriyama H (1984) Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery. Biochem Biophys Res Commun 120:481–485

    PubMed  CAS  Google Scholar 

  • Sugimoto Y, Whitman M, Cantley LC, Erikson RL (1984) Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglycerol. Proc Natl Acad Sci USA 81:2117–2121

    PubMed  CAS  Google Scholar 

  • Thomas AP, Alexander J, Williamson JR (1984) Relationship between inositol polyphosphate production and the increase of cytosolic free Ca2+ induced by vasopressin in isolated hepatocytes. J Biol Chem 259:5574–5584

    PubMed  CAS  Google Scholar 

  • Toback FG (1980) Induction of growth in kidney epithelial cells in culture by Na+. Proc Natl Acad Sci USA 77:665–6656

    Google Scholar 

  • Tomooka Y, Imagawa W, Nandi S, Bern HA (1983) Growth effect of lithium on mouse mammary epithelial cells in serum-free collagen gel culture. J Cell Physiol 117:290–296

    PubMed  CAS  Google Scholar 

  • Treiser S, Kellar KJ (1979) Lithium effects on adrenergic receptor supersensitivity in rat brain. Eur J Pharmacol 58:85–86

    PubMed  CAS  Google Scholar 

  • Ullrich KJ, Rumrich G, Kloess S (1976) Active Ca2+ reabsorption in the proximal tubule of the rat kidney. Dependence on sodium- and buffer transport. Pflügers Arch 364:223–228

    PubMed  CAS  Google Scholar 

  • Volpe P, Salviati G, Di Virgilio F, Pozzan T (1985) Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle. Nature 316:347–349

    PubMed  CAS  Google Scholar 

  • Wang YC, Pandey GN, Mendels J, Frazer A (1974) Effect of lithium on prostaglandin E1-stimulated adenylate cyclase activity of human platelets. Biochem Pharmacol 23:845–855

    PubMed  CAS  Google Scholar 

  • Waterfield MD, Scrace GT, Whittle N, Stroobant P, Johnsson A, Wasteson A, Westermark B, Heldin CH, Huang JS, Deuel TF (1983) Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature 304:35–39

    PubMed  CAS  Google Scholar 

  • Williams RJP (1973) The chemistry and biochemistry of lithium. In: Gershon S, Shopsin B (eds) Lithium: its role in psychiatric research and treatment. Plenum, New York, pp 15–31

    Google Scholar 

  • Wilson DB, Bross TE, Sherman WR, Berger RA, Majerus PW (1985 a) 18O-labeling shows cyclic inositol phosphates are produced by cleavage of polyphosphoinositides with purified sheep seminal vesicle phospholipase C enzymes. Proc Natl Acad Sci USA 82:4013–4017

    PubMed  CAS  Google Scholar 

  • Wilson DB, Connolly TM, Bross TE, Majerus PW, Sherman WR, Tyler AN, Rubin LJ, Brown JE (1985 b) Isolation and characterization of the inositol cyclic phosphate products of polyphosphoinositide cleavage by phospholipase C: physiological effects in permeabilized platelets and limulus photoreceptor cells. J Biol Chem 260:13496–13501

    PubMed  CAS  Google Scholar 

  • Wood K (1985) The neurochemistry of mania. The effect of lithium on catecholamines, indoleamines and calcium mobilization. J Affective Disord 8:215–223

    CAS  Google Scholar 

  • Yoshikami S, Hagins WA (1970) Ionic basis of dark current and photocurrent of retinal rods. Biophys J 10:60a

    Google Scholar 

  • Zatz M, Reisine TD (1985) Lithium induces corticotropin secretion and desensitization in cultured anterior pituitary cells. Proc Natl Acad Sci USA 82:1286–1290

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schulz, I. (1988). Effect of Lithium in Stimulus — Response Coupling. In: Baker, P.F. (eds) Calcium in Drug Actions. Handbook of Experimental Pharmacology, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71806-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71806-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71808-3

  • Online ISBN: 978-3-642-71806-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics