Skip to main content

The Effect of Ruthenium Red and Other Agents on Mitochondrial Calcium Metabolism

  • Chapter
Book cover Calcium in Drug Actions

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 83))

Abstract

The physiological consequences of pharmacological interventions that change mitochondrial Ca2+ will depend on the role of Ca2+ in the control of mitochondrial metabolism and on the adverse effects of increased Ca2+ load on mitochondrial function. Until quite recently, it was generally believed that the function of mitochondria in cellular Ca2+ metabolism was to provide a sink for Ca2+. This view arose principally from the relatively low affinity of the Ca2+ uniporter (mediating Ca2+ influx) for cytosolic Ca2+ together with the massive capacity for Ca2+ accumulation displayed by isolated mitochondria when presented with supraphysiological levels of Ca2+. Although mitochondria may act as an intracellular sink under pathological conditions, this capacity is most probably quite incidental to the natural role of the mitochondrial Ca2+ transport systems in controlling intramitochondrial free Ca2+ at low levels according to the regulatory requirements of oxidative metabolism. The capacity for Ca2+ accumulation is also constrained by the tolerance of mitochondrial function to increased Ca2+ load. It is important to stress that there are therefore two aspects to the behaviour of mitochondria with respect to Ca2+. These two aspects are indicated in Fig. 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akerman KEO (1978) Changes in membrane potential during Ca2+ influx and efflux across the mitochondrial membrane. Biochim Biophys Acta 502:359–365

    Article  PubMed  CAS  Google Scholar 

  • Allen DG, Orchard CH (1983) Intracellular calcium concentration during hypoxia and metabolic inhibition in mammalian ventricular muscle. J Physiol 339:107–122

    PubMed  CAS  Google Scholar 

  • Ambudkhar IS, Kima PE, Shamoo AE (1984) Characterisation of calciphorin, the low molecular weight Ca2+ ionophore from rat liver mitochondria. Biochim Biophys Acta 771:165–170

    Article  Google Scholar 

  • Arnold PE, Lumlertgul D, Burke TJ, Schrier RW (1985) In vitro versus in vivo mitochondrial Ca2+ loading in ischaemic acute renal failure. Am J Physiol 248:F845–F850

    PubMed  CAS  Google Scholar 

  • Baumhütter S, Richter C (1982) The hydroperoxide-induced release of mitochondrial Ca2+ occurs via a distinct pathway and leaves mitochondria intact. FEBS Lett 148:271–275

    Article  Google Scholar 

  • Beatrice MC, Palmer JW, Pfeiffer DR (1980) The relationship between mitochondrial membrane potential, permeability and the retention of Ca2+ by mitochondria. J Biol Chem 255:8663–8671

    PubMed  CAS  Google Scholar 

  • Beatrice MC, Stiers DL, Pfeiffer DR (1982) Increased permeability of mitochondria during Ca2+ release induced by t-butylhydroperoxide or oxaloacetate. J Biol Chem 257:7161–7171

    PubMed  CAS  Google Scholar 

  • Boquist L (1984) Alloxan effects on mitochondria in vitro: correlation between endogenous adenine nucleotides and efflux of Ca2+. Biochem Int 9:637–641

    PubMed  CAS  Google Scholar 

  • Bourdillon PDV, Poole-Wilson PA (1981) Effects of ischaemia and reperfusion on Ca2+ exchange and mechanical function in isolated rabbit myocardium. Cardiovasc Res 15:121–130

    Article  PubMed  CAS  Google Scholar 

  • Broekemeier KM, Schmid PC, Schmid HHO, Pfeiffer DR (1985) Effects of phospholipase A2 inhibitors on ruthenium red-induced Ca2+ release from mitochondria. J Biol Chem 260:105–113

    PubMed  CAS  Google Scholar 

  • Carafoli E, Sottocasa GL (1974) The Ca2+ transport systems of the inner mitochondrial membrane and the problem of the Ca2+ carrier. In: Ernster L, Estabrook RW, Slater EC (eds) Dynamics of energy transducing membranes. Elsevier, Amsterdam, p 455

    Google Scholar 

  • Chien ICR, Abrams J, Pfau RG, Farber JL (1977) Prevention by chlorpromazine of ischaemic liver cell death. Am J Pathol 88:539–558

    PubMed  CAS  Google Scholar 

  • Cockrell RS (1982) The influence of nupercaine on Ca2+ transport by rat liver and Ehrlich ascites tumour cell mitochondria. FEBS Lett 144:279–282

    Article  PubMed  CAS  Google Scholar 

  • Coll KE, Joseph SK, Corkey BE, Williamson JR (1982) Determination of the matrix free Ca2+ concentration and kinetics of Ca2+ efflux in liver and heart mitochondria. J Biol Chem 257:8696–8704

    PubMed  CAS  Google Scholar 

  • Crompton M (1985) The calcium carriers of mitochondria. In: Martonosi AN (ed) The enzymes of biological membranes. 2nd edn, vol 3. Plenum, New York, p 249

    Google Scholar 

  • Crompton M (1986) The regulation of mitochondrial calcium transport in heart. In: Shamoo A (ed) Current topics in membranes and transport, vol 25. Academic, New York, pp 231–276

    Google Scholar 

  • Crompton M, Kunzi M, Carafoli E (1977) The calcium-induced and the sodium-induced effluxes of calcium from heart mitochondria; evidence for a sodium-calcium carrier. Eur J Biochem 79:549–558

    Article  PubMed  CAS  Google Scholar 

  • Crompton M, Heid I, Baschera C, Carafoli E (1979) The resolution of calcium fluxes in heart and liver mitochondria using the lanthanide series. FEBS Lett 104:352–354

    Article  PubMed  CAS  Google Scholar 

  • Crompton M, Kessar P, Al Nasser I (1983) The α-adrenergic mediated activation of the cardiac mitochondrial Ca2+ uniporter and its role in the control of intramitochondrial Ca2+ in vivo. Biochem J 216:333–342

    PubMed  CAS  Google Scholar 

  • Crompton M, Goldstone TP, Al Nasser I (1986) The regulation of mitochondrial calcium. In: Bader H, Gietzen K, Rosenthal J, Rudel R, Wolf HU (eds) Intracellular calcium regulation. Manchester University Press, Manchester, pp 67–78

    Google Scholar 

  • Deanna R, Panata L, Cancellotti FM, Quadro G, Galzigna L (1984) Properties of a new Ca2+ antagonist on cellular uptake and mitochondrial efflux of Ca2+. Biochem J 218:899–905

    Google Scholar 

  • Denton RM, McCormack JG (1980) On the role of the calcium transport cycle in heart and other mammalian tissues. FEBS Lett 119:1–8

    Article  PubMed  CAS  Google Scholar 

  • Ferrari R, diLisa F, Raddino R, Visioli O (1982) The effects of ruthenium red on mitochondrial function during post ischaemic reperfusion. J Mol Cell Cardiol 14:737–740

    Article  PubMed  CAS  Google Scholar 

  • Fletcher JM, Greenfield BF, Hardy CJ, Scargill D, Woodhead JL (1961) Ruthenium red. J Chem Soc Lond 2000–2006

    Google Scholar 

  • Frei B, Winterhalter KH, Richter C (1985) Mechanism of alloxan-induced Ca2+ efflux from rat liver mitochondria. J Biol Chem 260:7395–7401

    Google Scholar 

  • Grankvist K, Marklund S, Sehlin J, Taljedahl I (1979) Superoxide dismutase, catalase and scavengers of hydroxy 1 radicals protect against the toxic action of alloxan on pancreatic islet cells in vitro. Biochem J 182:17–25

    PubMed  CAS  Google Scholar 

  • Harding DP, Poole-Wilson PA (1980) Ca2+ exchange in rabbit myocardium during and after hypoxia: effect of temperature and substrate. Cardiovasc Res 14:435–445

    Article  PubMed  CAS  Google Scholar 

  • Harris EJ, Cooper MB (1982) Inhibition of Ca2+-stimulated ion losses in mitochondria by inhibitors of calmodulin. Biochem Biophys Res Commun 108:1614–1618

    Article  PubMed  CAS  Google Scholar 

  • Haworth RA, Hunter DR (1979) The Ca2+-induced membrane transition in mitochondria. Arch Biochem Biophys 195:460–467

    Article  PubMed  CAS  Google Scholar 

  • Hayat L, Crompton M (1982) Evidence for the existence of regulatory sites for Ca2+ on the Na+-Ca2+ carrier of cardiac mitochondria. Biochem J 202:509–518

    PubMed  CAS  Google Scholar 

  • Hayat LH, Crompton M (1985) Ca2+-dependent inhibition by trifluoperazine of the Na+-Ca2+ carrier in mitoplasts derived from heart mitochondria. FEBS Lett 182: 281–285

    Article  PubMed  CAS  Google Scholar 

  • Heikkila RE, Winston B, Cohen G, Barden H (1976) Alloxan-induced diabetes: evidence for hydroxyl radical as a cytotoxic intermediate. Biochem Pharmacol 25:1085–1092

    Article  PubMed  CAS  Google Scholar 

  • Henry PD, Schuchleib R, Davis R, Weiss ES, Sobel BD (1977) Myocardial contracture and accumulation of mitochondrial Ca2+ in ischaemic rabbit heart. Am J Physiol 233:H677–H684

    PubMed  CAS  Google Scholar 

  • Hiraoka T, DeBuysere M, Olson MS (1980) Studies of the effect of β-adrenergic agonists on the regulation of pyruvate dehydrogenase in the perfused rat heart. J Biol Chem 255:7604–7609

    PubMed  CAS  Google Scholar 

  • Hofstetter W, Mühlebach T, Lötscher HR, Winterhalter K, Richter C (1981) ATP prevents both hydroperoxide induced hydrolysis of pyridine nucleotides and release of calcium in rat liver mitochondria. Eur J Biochem 117:361–367

    PubMed  CAS  Google Scholar 

  • Hughes BP, Barritt GJ (1978) Effects of glucagon and N6,O2-dibutyryladenosine 3’:5’-cyclic monophosphate on calcium transport in isolated rat liver mitochondria. Biochem J 176:295–304

    PubMed  CAS  Google Scholar 

  • Jennings RB (1976) Relationship of acute ischaemia to functional defects and irreversibility. Circulation [suppl 1] 53:26–29

    Google Scholar 

  • Jurkowitz MS, Altschud RA, Brierley GP, Cragoe EJ (1983) Inhibition of Na+-dependent Ca2+ efflux from heart mitochondria by amiloride analogues. FEBS Lett 162:262–265

    Article  PubMed  CAS  Google Scholar 

  • Lewis MJ, Grey AC, Henderson AH (1979) Determinants of hypoxic contracture in isolated heart muscle preparations. Cardiovasc Res 13:86–94

    Article  PubMed  CAS  Google Scholar 

  • Lochner A, Opie LH, Owen P, Kotze JCN (1975) Oxidative phosphorylation in infarcting baboon and dog myocardium. J Mol Cell Cardiol 7:203–217

    Article  PubMed  CAS  Google Scholar 

  • Lötscher H, Winterhalter KH, Carafoli E, Richter C (1980) Hydroperoxide-induced loss of pyridine nucleotides and release of Ca2+ from rat liver mitochondria. J Biol Chem 255:9325–9330

    PubMed  Google Scholar 

  • Luft JH (1971) Ruthenium red and violet 1. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat Rec 171:347–368

    Article  PubMed  CAS  Google Scholar 

  • Matlib MA, Less S, Depover A, Schwartz A (1983) A specific inhibitory action of certain benzothiazepines and benzodiazepines on the sodium-calcium exchange process of heart and brain mitochondria. Eur J Pharm 89:377–385

    Google Scholar 

  • Matlib MA, Doane JD, Sperelakis N, Riccippo-Neto F (1985) Clonazepam and diltiazem both inhibit the Na+-Ca2+ exchange of mitochondria but only diltiazem inhibits the slow action potential of cardiac muscle. Biochem Biophys Res Commun 128:290–296

    Article  PubMed  CAS  Google Scholar 

  • McCormack JG (1985) Studies on the activation of rat liver pyruvate dehydrogenase by adrenaline and glucagon. Role of increases in intramitochondrial Ca2+ concentration. Biochem J 231:597–608

    PubMed  CAS  Google Scholar 

  • McCormack JG, Denton RM (1981) The activation of pyruvate dehydrogenase in the perfused rat heart by adrenaline and other inotropic agents. Biochem J 194:639–643

    PubMed  CAS  Google Scholar 

  • McCormack JG, Denton RM (1984) Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat heart. Evidence from studies with isolated mitochondria that adrenaline activates the pyruvate and 2-oxoglutarate complexes by increasing the intramitochondrial concentration of Ca2+. Biochem J 218:235–247

    PubMed  CAS  Google Scholar 

  • McCormack JG, England PJ (1984) Ruthenium red inhibits the activation of pyruvate dehydrogenase caused by positive inotropic agents in the perfused rat heart. Biochem J 214:581–585

    Google Scholar 

  • Miranova GD, Tutjana VS, Pronevitch LA, Trofimenko NT, Miranov GP, Grigorjev PA, Kondrashova M (1982) Isolation and properties of a Ca2+ transporting glycoprotein and peptide from beef heart mitochondria. J Bioenerg Biomembr 14:213–219

    Article  Google Scholar 

  • Moore CL (1971) Specific inhibition of mitochondrial calcium transport by ruthenium red. Biochem Biophys Res Commun 42:298–305

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi T, Nishioka K, Jarmakana JM (1982) Mechanism of tissue Ca2+ gain during reoxygenation after hypoxia in rabbit myocardium. Am J Physiol 242:H437–H449

    PubMed  CAS  Google Scholar 

  • Nayler WG, Poole-Wilson PA, Williams A (1979) Hypoxia and calcium. J Mol Cell Cardiol 11:683–706

    Article  PubMed  CAS  Google Scholar 

  • Nayler WF, Ferrari R, Williams A (1980) Protective effect of pretreatment with verapamil nifedipine, and propranolol on mitochondrial function in ischaemic and reperfused myocardium. Am J Cardiol 46:242–248

    Article  PubMed  CAS  Google Scholar 

  • Nicholls DG (1978) Calcium transport and proton electrochemical gradient in mitochondria from guinea pig cerebral cortex and rat heart. Biochem J 170:511–522

    PubMed  CAS  Google Scholar 

  • Nicholls DG, Brand MD (1980) The nature of the calcium ion efflux induced in rat liver mitochondria by the oxidation of endogenous nicotinamide nucleotides. Biochem J 188:113–118

    PubMed  CAS  Google Scholar 

  • Panfili E, Sandri G, Sottocasa GL, Lunazzi G, Liut G (1976) Specific inhibition of mitochondrial Ca2+ transport by antibodies directed to the Ca2+ binding glycoprotein. Nature 264:185–186

    Article  PubMed  CAS  Google Scholar 

  • Panfili E, Crompton M, Sottocasa GL (1981) Immunochemical evidence of the independence of the Na+-Ca2+ antiporter and the electrophoretic Ca2+ uniporter in heart mitochondria. FEBS Lett 123:30–32

    Article  PubMed  CAS  Google Scholar 

  • Peng C, Kane JJ, Staub KD, Murphy ML (1980) Improvement of myocardial energy production in ischaemic myocardium by in vivo infusion of ruthenium red. J Cardiovasc Pharm 2:45–54

    Article  CAS  Google Scholar 

  • Person RJ, Kuhn JA (1979) Depression of spontaneous and ionophore-induced transmitter release by ruthenium red at the neuromuscular junction. Brain Res Bull 4:669–674

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer DR, Schmid PC, Beatrice MC, Schmid HHO (1979) Intramitochondrial phospho-lipase activity and the effects of Ca2+ plus N-ethylmaleimide on mitochondrial function. J Biol Chem 254:11485–11494

    PubMed  CAS  Google Scholar 

  • Piacenza A, Osella R, Borgoglio R (1981) Effect of nifedipine on mitochondrial function of isolated rabbit hearts perfused under hypoxic conditions. J Mol Cell Cardiol 13:709 (abstract)

    Article  Google Scholar 

  • Pinsky WW, Lewis RM, McMillin-Wood JM, Hara H, Hartley CJ, Gillette DC, Entman ML (1981) Myocardial protection from ischaemic arrest: potassium and verapamil car-dioplagia. Am J Physiol 240:H326–H335

    PubMed  CAS  Google Scholar 

  • Puskin JS, Gunter TE, Gunter KK, Russell PR (1976) Evidence for more than one Ca2+ transport system in mitochondria. Biochemistry 15:3834–3842

    Article  PubMed  CAS  Google Scholar 

  • Reed KC, Bygrave FL (1974) Inhibition of mitochondrial calcium transport by lanthanides and ruthenium red. Biochem J 140:143–150

    PubMed  CAS  Google Scholar 

  • Richter C, Winterhalter KH, Baumhutter S, Lotscher H, Moser R (1983) ADP-ribosyla-tion in the inner membrane of rat liver mitochondria. Proc Natl Acad Sci USA 80:3188–3192

    Article  PubMed  CAS  Google Scholar 

  • Sandri G, Sottocasa GL, Panfili E, Liut G (1979) The ability of the mitochondrial Ca2+-binding glycoprotein to restore Ca2+ transport in glycoprotein depleted rat liver mitochondria. Biochim Biophys Acta 558:214–220

    Article  PubMed  CAS  Google Scholar 

  • Sastrosinh M, Weinberg JM, Hulmes HD (1982) The effect of gentamicin on calcium uptake by renal mitochondria. Life Sci 30:2309–2315

    Article  Google Scholar 

  • Scarpa A, Azzone GF (1970) The mechanism of ion translocation in mitochondria. Eur J Biochem 12:328–335

    Article  PubMed  CAS  Google Scholar 

  • Shine KI (1981) Ionic events in ischaemia and anoxia. Am J Pathol 102:256–261

    PubMed  CAS  Google Scholar 

  • Smith HJ, Kent KM (1980) Depressed contractile function in reperfused canine myocardium: metabolism and response to pharmacological agents. Cardiovasc Res 14:458–468

    Article  PubMed  CAS  Google Scholar 

  • Stimers JR, Byerly L (1982) Slowing of sodium current inactivation by ruthenium red in snail neurons. J Gen Physiol 80:485–497

    Article  PubMed  CAS  Google Scholar 

  • Tapia R, Mesa-Ruiz G (1977) Inhibition by ruthenium red of Ca2+-dependent release of 3H-GABA in synaptosomal fractions. Brain Res 126:160–166

    Article  PubMed  CAS  Google Scholar 

  • Taylor WM, Prpic V, Exton JH, Bygrave FL (1980) Stable changes to Ca2+ fluxes in mitochondria isolated from rat livers perfused with α-adrenergic agonists and with glucagon. Biochem J 188:443–450

    PubMed  CAS  Google Scholar 

  • Vaghy P, Johnson JD, Matlib MA, Wang T, Schwartz A (1982) Selective inhibition of Na+-induced Ca2+ release from heart mitochondria by diltiazem and other Ca2+ antagonist drugs. J Biol Chem 257:6000–6004

    PubMed  CAS  Google Scholar 

  • Vasington FD, Gazzotti P, Tiozzo R, Carafoli E (1972) The effect of ruthenium red on Ca2+ transport and respiration in rat liver mitochondria. Biochim Biophys Acta 256:43–54

    Article  PubMed  CAS  Google Scholar 

  • Waite M, Sisson P (1971) Partial purification and characterisation of the phospholipase A2 from rat liver mitochondria. Biochemistry 10:2377–2383

    Article  PubMed  CAS  Google Scholar 

  • Wolkowicz PE, Michael LA, Lewis RM, McMillin-Wood J (1983) Sodium-calcium exchange in dog heart mitochondria: effects of ischaemia and verapamil. Am J Physiol 244:H644–H651

    PubMed  CAS  Google Scholar 

  • Wrogemann K, Nylen EG (1978) Mitochondrial calcium overloading in cardiomyopathic hamsters. J Mol Cell Cardiol 10:185–195

    Article  PubMed  CAS  Google Scholar 

  • Zydowo MM, Swierczynski I, Nagel G, Wrzotkowa T (1985) The respiration and Ca2+ content of heart mitochondria with vitamin D-induced cardionecrosis. Biochem J 226:155–161

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crompton, M. (1988). The Effect of Ruthenium Red and Other Agents on Mitochondrial Calcium Metabolism. In: Baker, P.F. (eds) Calcium in Drug Actions. Handbook of Experimental Pharmacology, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71806-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71806-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71808-3

  • Online ISBN: 978-3-642-71806-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics