Skip to main content

Red Cell Membrane Proteins, Glycoproteins, and Aging

  • Conference paper
Blood Cells, Rheology, and Aging

Abstract

Age-dependent biochemical studies on red cells have been carried out by several groups (Bertolini 1962; Ferber et al. 1968; Glass et al. 1984; Kohlschütter et al. 1968; Mende 1965; Prankered 1958). The life span of erythrocytes demonstrates species-specific differences: in man it is 120 days and in mouse 50 days, while the red cells of the turtle have an especially high life span of about 500 days.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aminoff D, Bell WC, Fulton J, Ingebrigsten N (1976) Effect of sialidase on the viability of erythrocytes in circulation. Am J Hematol 1:419

    Article  PubMed  CAS  Google Scholar 

  • Aminoff D, William F, Vorder Bruegge C, Bell C, Sarpolis K, Williams R (1977) Role of sialic acid in survival of erythrocytes in circulation: interaction of neuraminidase-treated and untreated erythrocytes with spleen and liver at the cellular level. Proc Natl Acad Sci USA 74:1521

    Article  PubMed  CAS  Google Scholar 

  • Ashwell G, Morell AG (1974) The role of surface carbohydrate in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol 41:99

    PubMed  CAS  Google Scholar 

  • Bertolini AM (1962) Modifications of cellular enzymatic systems during ageing. Gerontologia 6:175

    Article  PubMed  CAS  Google Scholar 

  • Danon D, Marikowsky Y (1961) Difference de charge électrique de surface entre erythrocytes jeunes et ágés. CR Acad Sci 253:1271

    Google Scholar 

  • Darnborough J, Dunsford I, Wallace JA (1961) The ena antigen and antibody. A genetical modification of human red cells affecting their blood grouping reactions. Vox Sang 17:241

    Article  Google Scholar 

  • Emmelot P, Bos CS, Benedetti EJ, Runke P (1965) Studies of plasma membranes. Biochem Biophys Res Commun 21:333

    Article  Google Scholar 

  • Fairbanks G, Steck ThL, Wallach DFH (1971) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10:2606

    Article  PubMed  CAS  Google Scholar 

  • Ferber E, Munder PG, Kohlschütter A, Fischer H (1968) Lysolecithin-Stoffwechsel in Erythrozytenmembranen. Eur J Biochem 5:395

    Article  PubMed  CAS  Google Scholar 

  • Gattegno L, Bladier D, Cornillot P (1974) Role of sialic acid in the determination of survival of rabbit erythrocytes in circulation. Carbohydr Res 34:361

    Article  PubMed  CAS  Google Scholar 

  • Gattegno L, Bladier D, Cornillot P (1975) Aging in vivo and neuraminidase treatment of rabbit erythrocytes: influence on half-life as assessed by 51Cr labelling. Hoppe-Seylers Z Physiol Chem 356:391

    Article  PubMed  CAS  Google Scholar 

  • Glass GA, Gershon D (1984) Decreased enzymic protection and increased sensitivity to oxidative damage in erythrocytes as a function of cell and donor aging. Biochem J 218:531

    PubMed  CAS  Google Scholar 

  • Gregoriadis G, Putman D, Louis L, Neerunjun D (1974) Comparative effect and fate of nonen-trapped and liposome-entrapped neuramindase injected into rats. Biochem J 140:323

    PubMed  CAS  Google Scholar 

  • Jancik J, Schauer R (1974) Sialic acid — a determinant of the life-time of rabbit erythrocytes. Hoppe-Seylers Z Physiol Chem 355:395

    Article  PubMed  CAS  Google Scholar 

  • Kadlubowsi M, Agutter PS (1977) Changes in the activities of some membrane-associated enzymes during in vivo ageing of the normal human erythrocyte. Br J Haematol 37:111–125

    Google Scholar 

  • Kay MMB (1981) The IgG autoantibody binding determinant appearing on senescent cells resides on a 62.000 MW peptide. Acta Biol Med Germ 40:385

    PubMed  CAS  Google Scholar 

  • Kay MMB (1981) Isolation of the phagocytosis inducing IgG-binding antigen on senescent somatic cells. Nature (Lond) 289:491

    Article  CAS  Google Scholar 

  • Kay MMB (1985) Aging of cell membrane molecules leads to appearance of an aging antigen and removal of senescent cells. Gerontology 31:215

    Article  PubMed  CAS  Google Scholar 

  • Kohlschütter A, Ferber E, Munder PG, Fischer H (1968) Acyltransferase- und Lysophospholi-pase-Aktivität von in vivo und in vitro gealterten Erythrozyten. Folia Haematol (Leipz) 90:233

    Google Scholar 

  • Löhr W, Waller HD (1962) Zur Biochemie der Erythrozytenalterung. Folia Haematol (Leipz) 78:385

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265

    PubMed  CAS  Google Scholar 

  • Marchesi VT, Andrews EP (1971) Glycoproteins: isolation from cell membranes with lithium diodosalicylate. Science 174:1247

    Article  PubMed  CAS  Google Scholar 

  • Marchesi VT, Palade GE (1967) The localization of Mg-Na-K-activated adenosine triphosphatase on red cell ghost membranes. J Cell Biol 35:385

    Article  PubMed  CAS  Google Scholar 

  • Marchesi VT, Tillack TW, Jackson RL, Segrest JP, Scott RE (1972) Chemical characterization and surface orientation of the major glycoprotein of the human erythrocyte membrane. Proc Natl Acad Sci USA 69:1445

    Article  PubMed  CAS  Google Scholar 

  • Marchesi VT, Futhmayer H, Tomita M (1976) The red cell membrane. Ann Rev Biochem 45:667

    Article  PubMed  CAS  Google Scholar 

  • Marikovski Y, Elazar E, Danon D (1977) Rabbit erythrocyte survival following diminished sialic acid and ATP depletion. Mech Ageing Dev 6:233

    Article  Google Scholar 

  • Mende TJ (1965) Studies on 51Cr labeled erythrocyte turnover in relation to age. Gerontologia 11:57

    Article  PubMed  CAS  Google Scholar 

  • Morell AG, Irvine RA, Sternlieb I, Scheinberg H (1968) Physical and chemical studies on ceru-loplasmin. V. Metabolic studies on sialic acid free ceruplasmin in vivo. J Biol Chem 243:155

    PubMed  CAS  Google Scholar 

  • Platt D, Schoch P (1974) Effect of age and cardiac glycosides on the activity of ATPase (EC 3.6.1.3.) of red cell ghost membranes. Mech Ageing Dev 3:245

    Article  PubMed  CAS  Google Scholar 

  • Prankered TAJ (1958) The aging of red cells. J Physiol 143:325

    Google Scholar 

  • Seaman GVF, Knox RJ, Nordt FJ, Regan DH (1977) Red cell aging. I. Surface charge density and sialic acid content of density fractionated human erythrocytes. Blood 50:6

    Google Scholar 

  • Vömel T, Platt D, Strobelt W (1980) Diameters of erythrocytes of different ages measured by scanning electron microscopy. Mech Ageing Dev 13:357

    Article  PubMed  Google Scholar 

  • Waller HD, Schlegel B, Müller AA, Löhr GW (1955) Der Hämoglobingehalt in alternden Erythrozyten. Klin Wochenschr 37:898

    Article  Google Scholar 

  • Yaari A (1969) Mobility of human red blood cells of different age groups in an electric field. Blood 33:159

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Platt, D., Rieck, W. (1988). Red Cell Membrane Proteins, Glycoproteins, and Aging. In: Platt, D. (eds) Blood Cells, Rheology, and Aging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71790-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71790-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71792-5

  • Online ISBN: 978-3-642-71790-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics