Advertisement

Red Cell Membrane Lipids and Aging

  • H. Heckers
  • D. Platt
Conference paper

Abstract

The human erythrocyte membrane is composed of 50% protein, 40% lipid, and 10% carbohydrate by weight [45]. All the erythrocyte’s lipid is in the membrane. As shown in Table 1, the predominant lipids are phospholipids and unesterified cholesterol. The molar ratio of cholesterol to phospholipids is reported as ranging from 0.77 [2] to 0.90 [10]. The major classes of phospholipids represented are the choline-containing phosphatidylcholine and sphingomyelin, and the amino-phospholipids phosphatidylethanolamine and phosphatidylserine; the former three each constitute 25%-30% of the total membrane phospholipid, while phosphatidylserine makes up 10%—15%. In addition the membrane contains significant amounts of four neutral glycosphingolipids [9] with globoside as the predominant component, but it lacks triglyceride and cholesterol esters.

Keywords

Phospholipid Content Outer Leaflet Hereditary Spherocytosis Human Erythrocyte Membrane Alcoholic Liver Cirrhosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adlersberg D, Schaefer LE, Steinberg AG, Wang CI (1956) JAMA 162:619Google Scholar
  2. 2.
    Allan D Thomas P, Limbrick AR (1980) The isolation and characterization of 60 nm vesicles (nanovesicles) produced during ionophore A 23187-induced budding of human erythrocytes. Biochem J 188:881PubMedGoogle Scholar
  3. 3.
    Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466PubMedGoogle Scholar
  4. 4.
    Brasitus TA, Yeh KY, Holt PR, Schachter D (1984) Lipid fluidity and composition of intestinal microvillus membranes isolated from rats of different ages. Biochem Biophys Acta 778–341Google Scholar
  5. 5.
    Cooper RA (1970) Lipids of human red cell membrane. Normal composition and variability in disease. Semin Haematol 7:296.Google Scholar
  6. 6.
    Cooper RA, Kimball DB, Durocher JR (1974) Role of the spleen in membrane conditioning and hemolysis of spur cell in liver disease. N Engl J Med 290:1279PubMedCrossRefGoogle Scholar
  7. 7.
    Cooper RA, Leslie MH, Knight D, Detweiler DK (1980) Red cell cholesterol enrichment and spur cell anemia in dogs fed a cholesterol-enriched, atherogenic diet. J Lipid Res 21:1082PubMedGoogle Scholar
  8. 8.
    Cooper RA, Leslie MH, Fischkoff S, Shinitzky M, Shattil S (1978) Factors influencing the lipid composition and fluidity of red cell membranes in vitro: production of red cells possessing more than two cholesterols per phospholipid. Biochemistry 17:2CrossRefGoogle Scholar
  9. 9.
    Dawson G, Sweeley CC (1970) In vivo studies on glycosphingolipid on metabolism in porcine blood. J Biol Chem 245:2Google Scholar
  10. 10.
    Dodge JT, Phillips GB (1966) Autoxidation as a cause of altered lipid distribution in extracts from human red cells. J Lipid Res 7:387PubMedGoogle Scholar
  11. 11.
    Dodge J, Phillips GB (1967) Composition of phospholipids and of phospholipid fatty acids and aldehydes in human red cells. J Lipid Res 8:667PubMedGoogle Scholar
  12. 12.
    Duhamel G, Forgez P, Nalpas B, Berthelot P, Chapman MJ (1983) Spur cells in patients with alcoholic liver cirrhosis are associated with reduced plasma levels of apoA-II, HDL3, and LDL. J Lipid Res 24:1612PubMedGoogle Scholar
  13. 13.
    Fisher KA (1976) Analysis of membrane halves: cholesterol. Proc Natl Acad Sci USA 73:173PubMedCrossRefGoogle Scholar
  14. 14.
    Glomset JA, Norum KR, Gjone E (1983) Familial lecithinxholesterol acyltransferase deficiency. In: Stanburry JB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS (eds) The metabolic basis of inherited disease. McGraw-Hill Book Company, New York, p 643Google Scholar
  15. 15.
    Heckers H, Melcher FW, Schloeder U (1977) SP 2340 in the glass capillary chromatography of fatty acid methyl esters. J Chromatogr 136:311PubMedCrossRefGoogle Scholar
  16. 16.
    Herbert PN, Assmann G, Gotto AM, Fredrickson DS (1983) Familial lipoprotein deficiency: abetalipoproteinemia, hypobetalipoproteinemia, and Tangier disease. In: Stanburry JB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS (eds) The metabolic basis of inherited disease. McGraw-Hill Book Company, New York, p 589Google Scholar
  17. 17.
    Johnsson R (1978) Red cell membrane proteins and lipids in spherocytosis. Scand J Haematol 20:341PubMedCrossRefGoogle Scholar
  18. 18.
    Kahlenberg A, Walker C, Rohrlick R (1974) Evidence for an asymmetric distribution of phospholipids in the human erythrocyte membrane. Can J Biochem 52:289Google Scholar
  19. 19.
    Komidori K, Kamada T, Yamashita T et al. (1985) Erythrocyte membrane fluidity decreased in uremic hemodialyzed patients. Nephron 40:185PubMedCrossRefGoogle Scholar
  20. 20.
    Lange Y, Cohen CM, Poznansky MJ (1977) Transmembrane movement of cholesterol in human erythrocytes. Proc Natl Acad Sci USA 74:1538PubMedCrossRefGoogle Scholar
  21. 21.
    Lange Y, Dolde J, Steck TL (1981) The rate of transmembrane movement of cholesterol in the human erythrocyte. J Biol Chem 256:5321PubMedGoogle Scholar
  22. 22.
    Marchesi VT, Palade GE (1967) The localization of Mg-Na-K activates adenosine triphosphatase on red cell ghost membranes. J Cell Biol 35:385PubMedCrossRefGoogle Scholar
  23. 23.
    Marinetti GV, Crain RC (1978) Topology of amino-phospholipids in the red cell membrane. J Supramol Structure 8:191CrossRefGoogle Scholar
  24. 24.
    McIntyre N (1978) Plasma lipids and lipoproteins in liver disease. Gut 19:526PubMedCrossRefGoogle Scholar
  25. 25.
    Monsen ER, Okey R, Lyman RL (1962) Effect of diet and sex on the relative lipid composition of plasma and red blood cells in rat. Metabolism 11:10Google Scholar
  26. 26.
    Nagatomo T, Sasaki M, Konishi T (1984) Differences in lipid composition and fluidity of cardiac sacrolemma prepared from newborn and adult rabbits. Biochem Med 32:122PubMedCrossRefGoogle Scholar
  27. 27.
    Nagy K, Zs-Nagy V, Bertoni-Freddari C, Zs-Nagy I (1983) Alteration of the synaptosomal membrane “microviscosity” in the brain cortex of rats during aging and centrophenoxine treatment. Arch Gerontol Geriatr 2:23PubMedCrossRefGoogle Scholar
  28. 28.
    Nelson GJ (1967) Lipid composition of erythrocytes in various mammalian species. Biochim Biophys Acta 144:221PubMedGoogle Scholar
  29. 29.
    Nokubo M (1985) Physical-chemical and biochemical differences in liver plasma membranes in aging F-344 rats. J Gerontol 40:409PubMedGoogle Scholar
  30. 30.
    Op den Kamp JAF (1979) Lipid asymmetry in membranes. Ann Rev Biochem 48:47CrossRefGoogle Scholar
  31. 31.
    Platt D, Schoch P (1974) Effect of age and cardiac glycosides on the activity of adenosine triphosphatase (ATPase) of red cell ghost membranes. Mech Ageing Dev 3:245PubMedCrossRefGoogle Scholar
  32. 32.
    Platt D, Rieck W (1988) Red cell membrane proteins, glycoproteins and aging. In: Platt D (ed) Blood cells, rheology, and aging. Springer, Berlin Heidelberg New YorkGoogle Scholar
  33. 33.
    Rachmilewitz EA, Lubin BM, Shohet SM (1976) Lipid membrane peroxidation in β-thalassemia major.Blood 47:495PubMedGoogle Scholar
  34. 34.
    Reed CF, Swisher SM, Marinetti GV, Eden EG (1960) Studies of the lipids of the erythrocyte. I. Quantitative analysis of the lipids of normal human red blood cells. J Lab Clin Med 96:281Google Scholar
  35. 35.
    Seelig J (1970) Spin label studies of oriented smectic liquid crystals (a model system for bilayer membranes). J Am Chem Soc 92:3887CrossRefGoogle Scholar
  36. 36.
    Spector AA, Yorek MA (1985) Membrane lipid composition and cellular function. J Lipid Res 26:1015Google Scholar
  37. 37.
    Stoffel W, Scheid A (1967) Zur Polyenfettsäure- und Phospholipidsynthese in der Gewebekultur von Heia-Zellen. J Physiol Chem 348:205CrossRefGoogle Scholar
  38. 38.
    Svanborg A, Bengtsson C, Lindquist O, Roupe S, Steen B (1977) Plasma lipid changes in the female in aging and the menopause. Results from three population studies. Clin Chim Acta 79:299PubMedCrossRefGoogle Scholar
  39. 39.
    Takeuchi N, Matsumoto A, Katayama Y, Arao M, Koga M, Nakao H, Uchida K (1983) Changes with aging in serum lipoproteins and apolipoprotein C subclasses. Arch Gerontol Geriatr 2:41PubMedCrossRefGoogle Scholar
  40. 40.
    Vance DE, Sweeley CC (1967) Quantitative determination of the neutral glycosyl ceramides in human blood. J Lipid Res 8:621PubMedGoogle Scholar
  41. 41.
    Verkleij AJ, Zwaal RFA, Roelofson B et al. (1973) The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim Biophys Acta 323:178PubMedCrossRefGoogle Scholar
  42. 42.
    Ways P, Hanahan DJ (1964) Characterization and quantification of red cell lipids in normal man. J Lipid Res 5:318PubMedGoogle Scholar
  43. 43.
    Wood WG, Strong R, Williamson LS, Wise RW (1984) Changes in lipid composition of cortical synaptosomes from different age groups of mice. Life Sci 35:1947PubMedCrossRefGoogle Scholar
  44. 44.
    Zwaal RFA, Hemker CH (1982) Blood cell membranes and haemostasis. Haemostasis 11:12PubMedGoogle Scholar
  45. 45.
    Zwaal RF, Roelofson B, Confurius P, van Deenen LL (1973) Localization of red cell membrane constituents. Biochim Biophys Acta 300:159PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • H. Heckers
  • D. Platt

There are no affiliations available

Personalised recommendations