Skip to main content

Changes in Human Red Cell Mechanics During In Vivo Aging: Possible Influence on Removal of Senescent Cells

  • Conference paper
Blood Cells, Rheology, and Aging

Abstract

During its life span the human red blood cell undergoes repeated, reversible changes in its shape under the influence of circulatory flow forces. This ability to deform (i.e., cellular deformability) affects the bulk viscosity of the blood and is also a necessary requirement for the cells to pass through narrow vessels with openings smaller than the cell diameter. In these microvessels the concept of a continuum viscosity for blood seems invalid and it is thus necessary to consider the mechanical properties of the individual cells which will influence their passage. Although cellular deformability is rather a vague term, it is generally agreed that it is determined by a group of more specific mechanical properties of the red cell. These mechanical factors can be categorized as either extrinsic properties (cell size and shape) or intrinsic properties (internal viscosity and membrane vis-coelasticity, i.e., structural factors) (Meiselman 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Borun ER, Figueroa WG, Perry SM (1957) The distribution of Fe59 tagged human erythrocytes in centrifuged specimens as a function of cell age. J Clin Invest 36:676–679

    Article  PubMed  CAS  Google Scholar 

  • Canham PB (1969) Difference in geometry of young and old human erythrocytes explained by a filtering mechanism. Circ Res 25:39–47

    PubMed  CAS  Google Scholar 

  • Canham PB, Burton AC (1968) Distribution of size and shape in populations of normal human red cells. Circ Res 22:405–422

    PubMed  CAS  Google Scholar 

  • Charache S, Conley CL, Waugh DF, Ugoretz RG, Spurrell JR (1967) Pathogenesis of hemolytic anemia in homozygous hemoglobin C disease. J Clin Invest 46:1795–1810

    Article  PubMed  CAS  Google Scholar 

  • Clark MR, Mohandas N, Caggiano V, Shohet SB (1978) Effects of abnormal cation transport on disiccytes. J Supramol Struct 8:521–532

    Article  PubMed  CAS  Google Scholar 

  • Cokelet GR, Meiselman HJ (1968) Rheological comparison of hemoglobin solutions and erythrocyte suspensions. Science 162:275–277

    Article  PubMed  CAS  Google Scholar 

  • Evans EA (1973) New material concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells. Biophys J 13:941–954

    Article  PubMed  CAS  Google Scholar 

  • Evans EA (1980) Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells. Biophys J 30:265–284

    Article  PubMed  CAS  Google Scholar 

  • Evans EA, LaCelle PL (1975) Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation. Blood 45:29–43

    PubMed  CAS  Google Scholar 

  • Evans EA, Waugh R, Melnik L (1979) Elastic area compressibility modulus of red cell membrane. Biophys J 16:585–595

    Article  Google Scholar 

  • Greenwalt TJ, Steane EA, Lau FO, Sweeney-Hammond K (1980) Aging of the human erythrocyte. In: Sandler SG, Nusbacher J, Scanfield MS (eds) Immunobiology of the erythrocyte. Alan R Liss, New York, pp 195–212

    Google Scholar 

  • Hochmuth RM, Worthy PR, Evans EA (1979) Red cell extensional recovery and the determination of membrane viscosity. Biophys J 26:101–114

    Article  PubMed  CAS  Google Scholar 

  • Hochstein P, Jain SK (1981) Association of lipid peroxidation and polymerization of membrane proteins with erythrocyte aging. Fed Proc 40:183–188

    PubMed  CAS  Google Scholar 

  • LaCelle PL, Kirkpatrick H, Udkow MD, Arkin B (1973) Membrane fragmentation and Ca-membrane interaction: potential mechanism of shape change in the senescent red cell. In: Bessis M, Weed RI, Leblond PF (eds) Red cell shape. Springer, Berlin Heidelberg New York, pp 69–78

    Google Scholar 

  • Linderkamp O, Meiselman HJ (1982) Geometric, osmotic and membrane mechanical properties of density-separated human red cells. Blood 59:1121–1127

    PubMed  CAS  Google Scholar 

  • Linderkamp O, Wu PY, Meiselman HJ (1982) Deformability of density separated red blood cells in normal newborn infants and adults. Pediatr Res 16:964–968

    Article  PubMed  CAS  Google Scholar 

  • Marks PA, Johnson AB (1958) Relationship between the age of human erythrocytes and their osmotic resistance: a basis for separating young and old erythrocytes. J Clin Invest 37:1542–1551

    Article  PubMed  CAS  Google Scholar 

  • Murphy JR (1973) Influence of temperature and method of centrifugation on the separation of erythrocytes. J Lab Clin Med 82:334–342

    PubMed  CAS  Google Scholar 

  • Nash GB, Meiselman HJ (1983) Red cell and ghost viscoelasticity; effects of hemoglobin concentration and in vivo aging. Biophys J 43:63–73

    Article  PubMed  CAS  Google Scholar 

  • Nash GB, Wyard SJ (1981) Changes in surface area and volume measured by micropipette aspiration for erythrocytes ageing in vivo. Biorheology 17:479–484

    Google Scholar 

  • Pearson HA (1967) Life span of the fetal red blood cell. Pediatrics 70:166–174

    Article  CAS  Google Scholar 

  • Pfafferott C, Nash GB, Meiselman HJ (1985) Red cell deformation in shear flow. Biophys J 47:695–704

    Article  PubMed  CAS  Google Scholar 

  • Prankred TAJ (1958) The ageing of red cells. J Physiol 143:325–331

    Google Scholar 

  • Ross PD, Minton AP (1977) Hard quasi-spherical model for the viscosity of hemoglobin solutions. Biochem Biophys Res Comm 76:971–976

    Article  PubMed  CAS  Google Scholar 

  • Salhany JM, Gaines KC (1981) Connections between cytoplasmic proteins and the erythrocyte membrane. Trends Biochem Sci 6:13–15

    Article  CAS  Google Scholar 

  • Tillman W, Levin C, Prindull G, Schroter W (1980) Rheological properties of young and aged erythrocytes. Klin Wochenschr 58:569–574

    Article  Google Scholar 

  • Williams AR, Morris DR (1980) The internal viscosity of the human erythrocyte may determine its life span in vivo. Scand J Haematol 24:57–62

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nash, G.B., Linderkamp, O., Pfafferoth, C., Meiselman, H.J. (1988). Changes in Human Red Cell Mechanics During In Vivo Aging: Possible Influence on Removal of Senescent Cells. In: Platt, D. (eds) Blood Cells, Rheology, and Aging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71790-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71790-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71792-5

  • Online ISBN: 978-3-642-71790-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics