The Role of White Blood Cells in the Control of Blood Rheology

  • S. Chien
Conference paper


The rheological behavior of blood cells plays an important role in governing blood flow dynamics in the microcirculation [5]. Although the white blood cells (WBCs) exist in a much lower volume concentration than the red blood cells (RBCs), the WBCs may exert significant rheological influences on microcirculatory flow [4], because of their larger volume and lower deformability [16, 19].


Ringer Solution Elastic Element Membrane Area Microvascular Obstruction Micropipette Aspiration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bagge U, Branemark PI (1977) White blood cell rheology. An intravital study in man. Adv Microcirc 7: 1–17Google Scholar
  2. 2.
    Bagge U, Karlsson R (1980) Maintenance of white blood cell margination at the passage through small venular junctions. Microvasc Res 20: 92–95PubMedCrossRefGoogle Scholar
  3. 3.
    Bagge U, Amundson B, Lauritzen C (1980) White blood cell deformability and plugging of skeletal muscle capillaries in hemorrhagic shock. Acta Physiol Scand 108: 159–163PubMedCrossRefGoogle Scholar
  4. 4.
    Braide M, Amundsson B, Chien S, Bagge U (1984) Quantitative studies on the influence of leukocytes on the vascular resistance in a skeletal muscle preparation. Microvasc Res 27: 331–352PubMedCrossRefGoogle Scholar
  5. 5.
    Chien S (1982) Rheology in the microcirculation in normal and low flow states. Adv Shock Res 8: 71–90PubMedGoogle Scholar
  6. 6.
    Chien S (1985) Influence of inflammation on white cell rheology. In: Cellular aspects of inflammation: potentials for drugs (ed. Marcel GA). Lab Roussel, Paris, pp 11–18Google Scholar
  7. 7.
    Chien S, Sung KLP (1984) Effect of colchicine on viscoelastic properties of neutrophils. Biophys J 46: 383–386PubMedCrossRefGoogle Scholar
  8. 8.
    Chien S, Sung KLP, Skalak R, Usami S, Tozeren A (1978) Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane. Biophys J 24: 463–487PubMedCrossRefGoogle Scholar
  9. 9.
    Chien S, Schmalzer EA, Lee MML, Impulluso T, Skalak R (1983) Role of white blood cells in filtration of blood cell suspensions. Biorheology 20: 11–27PubMedGoogle Scholar
  10. 10.
    Chien S, Usami S, Skalak R (1984) Blood flow in small tubes. In Renkin EM, Michel C (eds): “Handbook of physiology: microcirculation.” Wash DC: Am Physiol Soc, pp 217–249Google Scholar
  11. 11.
    Chien S, Schmid-Schonbein GW, Sung KLP, Schmalzer EA, Skalak R (1984) Viscoelastic properties of leukocytes. In: White cell mechanics: basic science and clinical aspects (eds. Meiselman HJ, Lichtman MA, LaCelle PL).Alan R Liss, New York, pp 19–51Google Scholar
  12. 12.
    Cokelet GR, Meiselman HJ (1968) Rheological comparison of hemoglobin solutions and erythrocyte suspensions. Science 162: 275–277PubMedCrossRefGoogle Scholar
  13. 13.
    Elsbach P (1974) Phagocytosis. In Zweifach BW, Grant L, McCluskey RT (eds) The inflammatory process. New York: Academic Press, Inc. (2nd edition), ch 1, pp 363–410Google Scholar
  14. 14.
    Gallin JI, Quie PC (eds) (1978) Leukocyte chemotaxis: methods, physiology and clinical implications. New York: Raven PressGoogle Scholar
  15. 15.
    Hartwig JH, Stossel TP (1975) Isolation and properties of actin, myosin, and a new actin binding protein in rabbit alveolar macrophages. J Biol Chern 250: 5696–5705Google Scholar
  16. 16.
    Lichtman MA (1973) Rheology of leukocytes, leukocyte suspensions and blood in leukemia. J Clin Invest 52: 350–358CrossRefGoogle Scholar
  17. 17.
    Lichtman MA, Santillo PA, Kearney EA, Robertson GW, Weed RI (1976) The shape and surface morphology of human leukocytes in vitro: effect of temperature, metabolic inhibitors and agents that influence membrane structure. Blood Cells 2: 507–531Google Scholar
  18. 18.
    Marchesi VT, Florey HW (1960) Electron micrographic observations on the emigration of leukocytes. Quart J Exp Physiol 45: 343–347PubMedGoogle Scholar
  19. 19.
    Miller ME, Myers KA (1975) Cellular deformability of the human peripheral blood polymorphonuclear leukocyte: method of study, normal variation, and effects of physical and chemical alterations. J Reticuloendothel Soc 18: 337–345PubMedGoogle Scholar
  20. 20.
    Nobis U, Gaethgens P (1981) Rheology of white blood cells during blood flow through narrow tubes. Bibliotheca Anat 20: 211–214Google Scholar
  21. 21.
    Preston FE, Sokol RJ, Lileyman JS, Winfield DA, Blackburn EK (1978) Cellular hyperviscosity as a cause of neurological symptoms in leukemia. Brit Med J 1: 476–478PubMedCrossRefGoogle Scholar
  22. 22.
    Schmalzer EA, Skalak R, Usami S, Vayo M, Chien S (1983) Influence of red cell concentration on filtration of blood cell suspensions. Biorheology 20: 29–40PubMedGoogle Scholar
  23. 23.
    Schmid-Schonbein GW, Shih YY, Chien S (1980) Morphometry of human leukocytes. Blood 56: 866–875PubMedGoogle Scholar
  24. 24.
    Schmid-SchOnbein GW, Usami S, Skalak R, Chien S (1980) Cell distribution in capillary networks. Microvasc Res 19: 18–44PubMedCrossRefGoogle Scholar
  25. 25.
    Schmid-Schonbein GW, Usami S, Skalak R, Chien S (1980) The interaction ofleukocytes and erythrocytes in capillary and postcapillary vessels. Microvasc Res 19: 45–70PubMedCrossRefGoogle Scholar
  26. 26.
    Schmid-SchOnbein GW, Sung KLP, Tozeren H, Skalak R, Chien S (1981) Passive mechanical properties of human leukocytes. Biophys J 36: 243–256PubMedCrossRefGoogle Scholar
  27. 27.
    Schmid-Schonbein GW, Skalak R, Sung KLP, Chien S (1982) Human leukocytes in the active state. In: Bagge U, Born GV, Gaehtgens P (eds): White blood cells, morphology and rheology as related to function. The Hague: Martinus Nijhoff, pp 21–31Google Scholar
  28. 28.
    Shibata N, Takubo T, Senda N (1979) Ca+-sensitive contractile protein from leucocytes. In: Hatano S, Ishikawa H, Sato H (eds) Cell motility: molecules and organelle. Baltimore: University Park Press, pp 13–31Google Scholar
  29. 29.
    Skalak R, Lmpelluso T, Schmalzer EA, Chien S (1983) Theoretical modeling of filtration of blood cell suspensions. Biorheology 20: 41–56PubMedGoogle Scholar
  30. 30.
    Skalak R, Chien S, Schmid-Schonbein GW (1984) Viscoelastic deformation of WBC: Theory and analysis. In: White cell mechanics: basic science and clinical aspects (eds HJ Meiselman, MA Lichtman, PL LaCelle). Alan R Liss, New York, pp 1–18Google Scholar
  31. 31.
    Stossel TP, Pollard TD (1973) Myosin in polymorphonuclear leukocytes. J Biol Chern 248: 8288–8294Google Scholar
  32. 32.
    Sung P, Schmid-Schonbein GW, Skalak R, Schuessler GB, Usami S, Chien S (1982) Influence of physicochemical factors on rheology of human neutrophil. Biophys J 39: 101–106PubMedCrossRefGoogle Scholar
  33. 33.
    Underwood E (1970) Quantitative stereology. Reading, MA: Addison-Wesley CoGoogle Scholar
  34. 34.
    Usami S, Chien S, Bertles JF (1975) Deformability of sickle cells as studied by microsieving. J Lab Clin Med 86: 274–279PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • S. Chien
    • 1
  1. 1.Division of Circulatory Physiology and Biophysics, Department of Physiology and Cellular BiophysicsColumbia UniversityNew YorkUSA

Personalised recommendations