Mechanisms of Ischemic Cell Swelling in the Brain

  • O. Kempski
  • A. Baethmann
  • M. Jansen
  • F. Staub
Conference paper


Swelling of nervous and glial elements is a predominant feature of ischemic brain edema [2]. The critical threshold of cerebral blood flow depression causing ischemic water uptake into the brain is approximately 40% of normal [18]. Major disturbances of the blood-brain barrier function do not seem to be involved at that stage. Based on the classical notion of the double Donnan equilibrium, it is currently held that cell swelling under these circumstances is the result of a failing energy metabolism no longer capable of fuelling active pumping for compensation of the continuing cellular influx of Na+, Cl, and water [16]. Although cell volume regulation seems to depend on a functional energy metabolism (cf. Table 1), it remains questionable whether the concept of the Donnan equilibrium suffices to explain the rapid onset of cell swelling upon interruption or marked depression of blood flow to cerebral tissue. The mechanisms involved in ischemic cell swelling appear far more complex on a molecular level.


Brain Edema Regulatory Volume Decrease Energy Failure Transient Cerebral Ischemia Cell Volume Regulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ames A, Nesbett FB (1983) Pathophysiology of ischemic cell death. III. Role of extracellularfactors. Stroke 14: 233–240PubMedCrossRefGoogle Scholar
  2. 2.
    Baethmann A (1978) Pathophysiological and pathochemical aspects of cerebral edema. Neurosurg Rev 1: 85–100CrossRefGoogle Scholar
  3. 3.
    Bazan NG, Rodriguez de Turco EB (1980) Membrane lipids in the pathogenesis of brain edema. - Phospholipids and arachidonic acid, the earliest membrane components changed at the onset of ischemia. Adv Neural 28: 197–205Google Scholar
  4. 4.
    Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43: 1369–1374PubMedCrossRefGoogle Scholar
  5. 5.
    Betz E (1977) Vascular reactivity and ion homeostasis in heart and brain. In: Zülch KJ, Kaufmann W, Hossmann K-A, Hossmann V (eds) Brain and heart infarct. Springer, Berlin, pp 10–18CrossRefGoogle Scholar
  6. 6.
    Cala PM (1980) Volume regulation of amphiuma red blood cells. J Gen Physiol 76: 683–708PubMedCrossRefGoogle Scholar
  7. 7.
    Chaussy L, Baethmann A, Lubitz W (1981) Electrical sizing of nerve and glia cells in the study of cell volume regulation. In: Cervos-Navarro J, Fritschka E (eds) Cerebral microcirculation and metabolism. Raven Press, New York, pp 29–40Google Scholar
  8. 8.
    Grinstein S, Dupre A, Rothstein A (1982) Volume regulation of human lymphocytes. Role of calcium. J Gen Physiol 79: 849–868PubMedCrossRefGoogle Scholar
  9. 9.
    Kachel V (1976) Basic principles of electrical sizing of cells and particles and their realization in the new instrument “Metrizell”. J Histochem Cytochem 24: 211–230PubMedCrossRefGoogle Scholar
  10. 10.
    Kempski O, Chaussy L, Gross U, Zimmer M, Baethmann A (1983) Volume regulation and metabolism of suspended C6 glioma cells: an in vitro model to study cytotoxic brain edema. Brain Res 279: 217–228PubMedCrossRefGoogle Scholar
  11. 11.
    Kempski O, Spatz M, Valet G, Baethmann A (1985) Cell volume regulation of cerebrovascular endothelium in vitro. J Cell Physiol 123: 51–54PubMedCrossRefGoogle Scholar
  12. 12.
    Kempski O (1986) Cell swelling mechanisms in brain. In: Baethmann A, Go KG, Unterberg A (eds) Mechanisms of secondary brain damage. Plenum Press, New York, pp 203–220Google Scholar
  13. 13.
    Kempski O, Zimmer M, Neu A, v Rosen F, Jansen M, Baethmann A (in preparation) Control of glial cell volume in anoxia - in vitro studies on ischemic cell swellingGoogle Scholar
  14. 14.
    Kimelberg HK, Bourke RS, Stieg PE, Barron KD, Hirata H, Pelton EW, Nelson LR (1982) Swelling of astroglia after injury to the central nervous system: mechanisms and consequences. In: Grossman RG, Gildenberg PL (eds) Head injury: basic and clinical aspects. Raven Press, New York, pp 31–44Google Scholar
  15. 15.
    Kregenow FM (1981) Osmoregulatory salt transporting mechanisms: control of cell volume in anisotonic media. Ann Rev Physiol 43: 493–505CrossRefGoogle Scholar
  16. 16.
    Macknight ADC, Leaf A (1977) Regulation of cellular volume. Physiol Rev 37: 510–573Google Scholar
  17. 17.
    Maier-Hauff K, Lange M, Schürer L, Guggenbichler Ch, Vogt W, Jacob K, Baethmann A (1984) Glutamate and free fatty acid concentrations in extracellular vasogenic edema fluid. In: Go KG, Baethmann A (eds) Recent progress in the study and therapy of brain edema. Plenum Press, New York, pp 183–192Google Scholar
  18. 18.
    Symon L (1986) Progression and irreversibility in brain ischaemia. In: Baethmann A, Go KG, Unterberg A (eds) Mechanisms of secondary brain damage. Plenum Press, New York, pp 221–237Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • O. Kempski
    • 1
  • A. Baethmann
    • 1
  • M. Jansen
    • 1
  • F. Staub
    • 1
  1. 1.Institute for Surgical Research, Klinikum GroßhadernLudwig-Maximilians-UniversityMünchen 70Germany

Personalised recommendations