Advertisement

Neurogenic Control of Cerebral Circulation

  • L. Edvinsson

Abstract

A number of basic mechanisms are considered to regulate the cerebral circulation. Firstly, the blood flow to the brain is adjusted to meet the local demand of energy generation by the local release of products of cerebral tissue metabolism. Products of cerebral metabolism are thought to link the flow—metabolism changes. Secondly, chemical factors in the blood, such as carbon dioxide, may induce pronounced changes in cerebral blood flow. Thirdly, the cerebral circulation has an intrinsic system called “autoregulation” whereby resistance in the cerebral circulation is changed to meet systemic pressure changes, all resulting in the constancy of cerebral blood flow. In addition to the above-described mechanisms, the demonstration that brain vessels are innervated by a variety of aminergic and peptidergic nerve fibers has resulted in speculation that there is a neurogenic influence on the brain circulation. The perivascular nerve supply to the cerebral blood vessels may be divided into sympathetic, parasympathetic, and sensory components, as based on recent immunocytochemical studies, showing a diversity of neurotransmitter candidates, some of which coexist and may cooperate.

Keywords

Cerebral Blood Flow Vasoactive Intestinal Peptide Trigeminal Ganglion Vasoactive Intestinal Polypeptide Cerebral Circulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bill A, Linder J (1976) Sympathetic control of cerebral blood flow in acute arterial hypertension. Acta Physiol Scand 96: 114–121PubMedCrossRefGoogle Scholar
  2. 2.
    Chan-Palay V (1977) Innervation of cerebral blood vessels by norepinephrine, indoleamine, substance P and neurotensin fibers and the leptomeningeal indoleamine axons: their roles in vasomotor activity and local alterations of brain blood composition. In: Owman C, Edvinsson L (eds) Neurogenic control of brain circulation. Pergamon Press, Oxford, pp 39–54Google Scholar
  3. 3.
    Chorobsky J, Penfield W (1932) Cerebral vasodilator nerves and their pathway from the medulla oblongata. With observations on pial and intracerebral vascular plexus. Arch Neurol Psychiat 28: 1257–1289Google Scholar
  4. 4.
    Cuello AC, del Fiacco M, Paxinos G (1978) The central and peripheral ends of the substance P-containing sensory neurons in the rat trigeminal system. Brain Res 152: 499–509PubMedCrossRefGoogle Scholar
  5. 5.
    Duckles SP (1981) Evidence for a functional cholinergic innervation of cerebral arteries. J Pharmacol Exp Ther 217: 544–548PubMedGoogle Scholar
  6. 6.
    Duckles SP, Buck SH (1982) Substance P in the cerebral vasculature: depletion by capsaicin suggests a sensory role. Brain Res 245: 171–174PubMedCrossRefGoogle Scholar
  7. 7.
    Eckenstein F, Baughman RW (1984) Two types of cholinergic innervation in cotex, one co-localized with vasoactive intestinal polypeptide. Nature 309: 153–155PubMedCrossRefGoogle Scholar
  8. 8.
    Edvinsson L (1982) Sympathetic control of cerebral circulation. Trends Neurosci 5: 425–429CrossRefGoogle Scholar
  9. 9.
    Edvinsson L, Ekman R (1984) Distribution and dilatory effect of vasoactive intestinal polypeptide (VIP) in human cerebral arteries. Peptides 5: 329–331PubMedCrossRefGoogle Scholar
  10. 10.
    Edvinsson L, Emson P, McCulloch J, Tatemoto K, Uddman R (1983) Neuropeptide Y: cerebrovascular innervation and vasomotor effects in the cat. Neurosci Lett 43: 79–84PubMedCrossRefGoogle Scholar
  11. 11.
    Edvinsson L, Emson P, McCulloch J, Tatemoto K, Uddman R (1984) Neuropeptide Y: Immunocytochemical localization to and effect upon feline pial arteries and veins in vitro and in situ. Acta Physiol Scand 122: 155–163PubMedCrossRefGoogle Scholar
  12. 12.
    Edvinsson L, Fahrenkrug J, Hanko J, Owman C, Sundler F, Uddman R (1980) VIP (vasoactive intestinal polypeptide)-containing nerves of intracranial arteries in mammals. Cell Tissue Res 208: 135–142PubMedCrossRefGoogle Scholar
  13. 13.
    Edvinsson L, Falck B, Owman C (1977) Possibilities for a cholinergic action on smooth musculature and on sympathetic axons in brain vessels mediated by muscarinic and nicotinic receptors. J Pharmacol Exp Ther 200: 117–126PubMedGoogle Scholar
  14. 14.
    Edvinsson L, Fredholm BB, Hamel E, Jansen I, Verrecchia C (1985) Perivascular peptides relax cerebral arteries concomitant with stimulation of cyclic adenosine monophosphate accumulation or release of an endothelium-derived relaxing factor in the cat. Neurosci Lett 58: 213–217PubMedCrossRefGoogle Scholar
  15. 15.
    Edvinsson L, Jansen I, Uddman R (1985) Substance P and cerebral blood vessels. Nerve fibre supply and characterization of postsynaptic receptors. In: Håkansson R, Sundler F(eds) Tachykinin antagonists. Elsevier, Amsterdam, pp 57–64Google Scholar
  16. 16.
    Edvinsson L, MacKenzie ET (1977) Amine mechanisms in the cerebral circulation. Pharmacal Rev 28: 27 5–348Google Scholar
  17. 17.
    Edvinsson L, MacKenzie ET, Robert J-P, Skarby T, Young AR (1985) Cerebrovascular responses to haemorrhagic hypotension in anaesthetized cats. Effects of α-adrenoceptor antagonists. Acta Physiol Scand 123: 317–323PubMedCrossRefGoogle Scholar
  18. 18.
    Edvinsson L, McCulloch J (1985) Distribution and vasomotor effects of peptide HI (PHI) in feline cerebral blood vessels in vitro and in situ. Regul Pept 10: 345–356PubMedCrossRefGoogle Scholar
  19. 19.
    Edvinson L, McCulloch J, Rosell S, Uddman R (1982) Antagonism by (D-Pro2 , D-Trp7,9)substance P of the cerebrovascular dilatation induced by substance P. Acta Physiol Scand 116: 411–416CrossRefGoogle Scholar
  20. 20.
    Edvinsson L, McCulloch J, Uddman R (1981) Substance P: immunohistochemical localization and effect upon cat pial arteries in vitro and in situ. J Physiol 318: 251–258PubMedGoogle Scholar
  21. 21.
    Edvinsson L, McCulloch J, Uddman R (1982) Feline cerebral veins and arteries: comparison of autonomic innervation and vasomotor responses. J Physiol 325: 161–173PubMedGoogle Scholar
  22. 22.
    Edvinsson L, Nielsen KC, Owman C, Sporrong B (1972) Cholinergic mechanisms in pial vessels. Histochemistry, electron microscopy and pharmacology. Z Zellforsch 134: 311–325PubMedCrossRefGoogle Scholar
  23. 23.
    Edvinsson L, Owman C (1974) Pharmacological characterization of adrenergic α-and β-receptors mediating the vasomotor responses of cerebral arteries in vitro. Circ Res 35: 835–849PubMedGoogle Scholar
  24. 24.
    Edvinsson L, Owman C, Rosengren E, West KA (1972) Concentration of noradrenaline in pial vessels, choroid plexus, and iris during two weeks after sympathetic ganglionectomy or decentralization. Acta Physiol Scand 85: 201–206PubMedCrossRefGoogle Scholar
  25. 25.
    Edvinsson L, Owman C, Siesjö BK (1976) Physiological role of cerebrovascular sympathetic nerves in the autoregulation of cerebral blood flow. Brain Res 117: 519–523PubMedCrossRefGoogle Scholar
  26. 26.
    Edvinsson L, Rosendahl-Helgesen S, Uddman R (1983) Substance P: localization, concentration and release in cerebral arteries, choroid plexus and dura mater. Cell Tissue Res 234: 1–7PubMedCrossRefGoogle Scholar
  27. 27.
    Edvinsson L, Uddman R (1982) Immunohistochemical localization and dilatory effect of substance P on human cerebral vessels. Brain Res 232: 466–471PubMedCrossRefGoogle Scholar
  28. 28.
    Ekblad E, Edvinsson L, Wahlestedt C, Uddman R, Hakanson R, Sundler F (1984) Neuropeptide Y co-exists and co-operates with noradrenaline in perivascular nerve fibers. Regul Pept 8: 225–235PubMedCrossRefGoogle Scholar
  29. 29.
    Estrada C, Hamel E, Krause DN (1983) Biochemical evidence for cholinergic innervation on intracerebral blood vessels. Brain Res 266: 261–270PubMedCrossRefGoogle Scholar
  30. 30.
    Fitch W, MacKenzie ET, Harper AM (1975) Effects of decreasing arterial blood pressure on cerebral blood flow in the baboon. Influence of the sympathetic nervous system. Circ Res 37: 550–557PubMedGoogle Scholar
  31. 31.
    Florence VM, Bevan JA (1979) Biochemical determinations of cholinergic innervation in cerebral arteries. Circ Res 45: 212–218PubMedGoogle Scholar
  32. 32.
    Gibbins IL, Brayden JE, Bevan JA (1984) Distribution and origins of VIP-immunoreactive nerves in the cephalic circulation of the cat. Peptides 5: 209–212PubMedCrossRefGoogle Scholar
  33. 33.
    Hamel E, Assumel-Lurdin C, Edvinsson L, MacKenzie ET (1986) Cholinergic innervation of small pial vessels: specific uptake and release processes. Acta Physiol Scand 127 Suppl 552: 13–16Google Scholar
  34. 34.
    Hanko J, Hardebo JE, Kåhrström J, Owman C, Sundler F (1985) Calcitonin gene-related peptide is present in mammalian cerebrovascular nerve fibers and dilates pial and peripheral arteries. Neurosci Lett 57: 91–95PubMedCrossRefGoogle Scholar
  35. 35.
    Hara H, Hamill GS, Jacobowitz DM (1985) Origin of cholinergic nerves to the rat major cerebral arteries: coexistence with vasoactive intestinal polypeptide. Brain Res Bull 14: 179–188PubMedCrossRefGoogle Scholar
  36. 36.
    Hardebo JE, Edvinsson L, Emson PC, Owman C (1977) Isolated brain microvessels: enzymes related to adrenergic and cholinergic functions. In: Owman C, Edvinsson L (eds) Neurogenic control of the brain circulation. Pergamon Press, London, pp 105–113Google Scholar
  37. 37.
    Heistad DD, Marcus ML, Said SI, Gross PM (1980) Effect of acetylcholine and vasoactive intestinal peptide on cerebral blood flow. Am J Physiol 239: H73-H80PubMedGoogle Scholar
  38. 38.
    Hokfelt T, Kellerth JO, Nilsson G, Pemow B (1975) Experimental immunohistochemical studies on the localization and distribution of substance P in cat primary sensory neurons. Brain Res 100: 235–252PubMedCrossRefGoogle Scholar
  39. 39.
    Kobayaschi S, Kyoshima K, Olschowka JA, Jacobowitz DM (1983) Vasoactive intestinal polypeptide immunoreactive and cholinergic nerves in the whole mount preparation of the major cerebral arteries of the rat. Histochemistry 79: 377–381CrossRefGoogle Scholar
  40. 40.
    Kuschinsky W, Wahl M (1976) Alpha receptor stimulation by endogenous and exogenous norepinephrine and blockade by phentolamine in pial arteries of cats. Circ Res 37: 168–174Google Scholar
  41. 41.
    Kuschinsky W, Wahl M, Neiss A (1974) Evidence for cholinergic dilatatory receptors in pial arteries of cats. A microapplication study. Pflügers Arch 347: 199–208PubMedCrossRefGoogle Scholar
  42. 42.
    Larsen JJ, Boeck V, Ottesen B (1981) Effect of vasoactive intestinal polypeptide on cerebral blood flow in the goat. Acta Physiol Scand 111: 471–474PubMedCrossRefGoogle Scholar
  43. 43.
    Larsson L-I, Edvinsson L, Fahrenkrug J, Hakanson R, Owman C, Schaffalitzky de Muckadell OB, Sundler F (1976) Immunohistochemical localization of a vasodilatory polypeptide (VIP) in cerebrovascular nerves. Brain Res 113: 400–404PubMedCrossRefGoogle Scholar
  44. 44.
    Lee T, Kawai Y, Shiosaka S, Takami K, Kiyama H, Hillyard CJ, Girgis S, Macintyre I, Emson PC, Tohyama M (1985) Coexistence of calcitonin gene-related peptide and substance P-like peptide in single cells of the trigeminal ganglion of the rat: immunohistochemical analysis. Brain Res 330: 194–196PubMedCrossRefGoogle Scholar
  45. 45.
    Lee TJ-F, Saito A, Berezin I (1984) Vasoactive intestinal polypeptide-like substance: the potential transmitter for cerebral vasodilatation. Science 224: 898–901PubMedCrossRefGoogle Scholar
  46. 46.
    Liu-Chen L-Y, Han DH, Moskowitz MA (1983) Pia arachnoid contains substance P originating from trigeminal neurons. Neuroscience 9: 803–808PubMedCrossRefGoogle Scholar
  47. 47.
    Liu-Chen L-Y, Mayberg MA, Moskowitz MA (1983) Immunohistochemical evidence for a substance P-containing trigeminovascular pathway to pial arteries in cats. Brain Res 268: 162–166PubMedCrossRefGoogle Scholar
  48. 48.
    Lorén I, Emson PC, Fahrenkrug J, Björklund A, Alumets J, Hakanson R, Sundler F (1979) Distribution of vasoactive intestinal polypeptide in the rat and mouse brain. Neuroscience 4: 1953–1976PubMedCrossRefGoogle Scholar
  49. 49.
    Lowe RF, Gilboe DD (1973) Canine cerebrovascular response to nitroglycerin, acetylcholine, 5-hydroxytryptamine and angiotensin. Am J Physiol 225: 1333–1338PubMedGoogle Scholar
  50. 50.
    MacKenzie ET, McGeorge AP, Graham DI, Fitch W, Edvinsson L, Harper AM (1979) Effects of increasing arterial blood pressure on cerebral blood flow in the baboon. Influence of the sympathetic nervous system. Pflügers Arch 378: 189–195PubMedCrossRefGoogle Scholar
  51. 51.
    Mason RT, Peterfreund RA, Sawchenko PE, Corrigan AZ, Rivier JE, Vale WW (1984) Release of the predicted calcitonin gene-related peptide from cultured rat trigeminal ganglion cells. Nature 308: 653–655PubMedCrossRefGoogle Scholar
  52. 52.
    Matsuda M, Meyer J, Deshmukh VD, Tagashira Y (1976) Effect of acetylcholine on cerebral circulation. J N eurosurg 45: 423–431Google Scholar
  53. 53.
    Matsuyama T, Shiosaka S, Matsumoto M, Yoneda S, Kimura K, Abe H, Hayakawa T, Inoue H, Tohyama M (1983) Overall distribution of vasoactive intestinal polypeptide-containing nerves in the wall of the cerebral arteries: an immunohistochemical study using whole mounts. Neuroscience 10: 89–96PubMedCrossRefGoogle Scholar
  54. 54.
    Mayberg M, Langer RS, Zervas NT, Moskowitz MA (1981) Perivascular meningeal projections from cat trigeminal ganglia: possible pathway for vascular headaches in man. Science 213: 228–230PubMedCrossRefGoogle Scholar
  55. 55.
    McCulloch J (1984) Perivascular nerve fibers and the cerebral circulation. Trends Neurosci 7: 135–138CrossRefGoogle Scholar
  56. 56.
    McCulloch J, Edvinsson L (1980) Cerebral circulatory and metabolic effects of vasoactive intestinal polypeptide. Am J Physiol 238: H449-H456PubMedGoogle Scholar
  57. 57.
    McCulloch J, Kelly PAT (1983) A functional role for vasoactive intestinal polypeptide in anterior cingulate cortex. Nature 304: 438–440PubMedCrossRefGoogle Scholar
  58. 58.
    McCulloch J, Kelly PAT, Uddman R, Edvinsson L (1983) Functional role for vasoactive intestinal polypeptide in the caudate nucleus. Proc Natl Acad Sci USA 80: 1472–1476PubMedCrossRefGoogle Scholar
  59. 59.
    McCulloch J, Uddman R, Kingman TA, Edvinsson L (1986) Calcitonin gene-related peptide: functional role in cerebrovascular regulation. Proc Natl Acad Sci USA, 83: 5731–5735PubMedCrossRefGoogle Scholar
  60. 60.
    Moskowitz MA, Brody M, Liu-Chen L-Y (1983) In vitro release of immunoreactive substance P from putative afferent nerve endings in bovine pia arachnoid. Neuroscience 9: 804–814CrossRefGoogle Scholar
  61. 61.
    Nawa H, Hirose T, Takashima H, Lnayama S, Nakanishi S (1983) Nucleotide sequences of cloned cDNAs for two types of bovine brain substance P precursor. Nature 306: 32–36PubMedCrossRefGoogle Scholar
  62. 62.
    Nielsen KC, Owman C (1967) Adrenergic innervation of pial arteries related to the circle of Willis of the cat. Brain Res 6: 773–776PubMedCrossRefGoogle Scholar
  63. 63.
    Pernow B (1983) Substance P. Pharmacol Rev 35: 85–141Google Scholar
  64. 64.
    Reynier-Rebuffel A-M, Lacombe P, Aubineau P, Sercombe R, Seylaz J (1979) Multiregional cerebral blood flow changes induced by a cholinomimetic drug. Europ J Pharmacol 60: 237–240CrossRefGoogle Scholar
  65. 65.
    Rosenfeld MG, Mermod JJ, Amara SO, Swanson LW, Sawchenko PE, Rivier J, Vale WW, Evans RM (1983) Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 304: 129–135PubMedCrossRefGoogle Scholar
  66. 66.
    Scremin OU, Rovere AA, Raynald AC, Giardini A (1973) Cholinergic control of blood flow in the cerebral cortex of the rat. Stroke 4: 232–239CrossRefGoogle Scholar
  67. 67.
    Szolcsanyi J, Jansc6-Gabor A, J6o F (1975) Functional and fine structural characteristics of the sensory neuron blocking effect of capsaicin. Naunyn-Schmiedeberg’s Arch Pharmacol 287: 157–169CrossRefGoogle Scholar
  68. 68.
    Sundler F, Brodin E, Ekblad E, Håkanson R, Uddman R (1985) Sensory nerve fibers: distribution of substance P, neurokinin A and calcitonin gene-related peptide. In: Hakanson R, Sundler F (eds) Tachykinin antagonists. Elsevier, Amsterdam, pp 3–14Google Scholar
  69. 69.
    Suzuki Y, McMaster D, Lederis K, Rorstad OP (1984) Characterization of the relaxant effects of vasoactive intestinal peptide (VIP) and PHI on isolated brain arteries. Brain Res 322: 9–16PubMedCrossRefGoogle Scholar
  70. 70.
    Tatemoto K (1982) Neuropeptide Y: complete amino acid sequence of the brain peptide. Proc Natl Acad Sci USA 230: 487–493Google Scholar
  71. 71.
    Tatemoto K, Carlquist M, Mutt V (1982) Neuropeptide Y-a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 296: 659–660PubMedCrossRefGoogle Scholar
  72. 72.
    Toda N (1979) Acetylcholine-induced relaxation in isolated dog cerebral arteries. J Pharmacol Exp Ther 209: 352–358PubMedGoogle Scholar
  73. 73.
    Toda N (1982) Relaxant responses to transmural stimulation and nicotine of dog and monkey cerebral arteries. Am J Physiol 243:H145-H153PubMedGoogle Scholar
  74. 74.
    Uddman R, Edvinsson L, Ekman R, Kingman TA, McCulloch J (1985) Innervation of the feline cerebral vasculature by nerve fibers containing calcitonin gene-related peptide: trigeminal origin and co-existence with substance P. Neurosci Lett 62: 131–136PubMedCrossRefGoogle Scholar
  75. 75.
    Uddman R, Edvinsson L, Owman C, Sundler F (1981) Perivascular substance P: occurrence and distribution in mammalian pial vessels. J Cereb Blood Flow Metabol 1: 227–231CrossRefGoogle Scholar
  76. 76.
    Wei EP, Kontos HA, Said SI (1980) Mechanisms of action of vasoactive intestinal polypeptide on cerebral arterioles. Am J Physiol 239:H765-H768PubMedGoogle Scholar
  77. 77.
    Wilson DA, O’Neill JT, Said SI, Traystman RJ (1981) Vasoactive intestinal polypeptide and the canine cerebral circulation. Circ Res 48: 138–148PubMedGoogle Scholar
  78. 78.
    Winquist RJ, Webb RC, Bohr DF (1982) Relaxation to transmural nerve stimulation and exogenously added norepinephrine in porcine cerebral vessels. A study utilizing cerebrovascular intrinsic tone. Circ Res 51: 769–776PubMedGoogle Scholar
  79. 79.
    Yamamoto K, Matsuyama T, Shiosaka S, Lnagaki S, Senba E, Shimizu Y, Ishimoto I, Hayakawa T, Matsumoto M, Tohyama M (1983) Overall distribution of substance P-containing nerves in the wall of the cerebral arteries of the guinea-pig and its origin. J Comp Neurol 215: 421–426PubMedCrossRefGoogle Scholar
  80. 80.
    Ulrich K, Auer LM, Kuschinsky W (1982) Cat pial venoconstriction by topical microapplication of norepinephrine. J Cereb Blood Flow Metabol 2: 109–111CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • L. Edvinsson
    • 1
  1. 1.Department of Internal MedicineUniversity HospitalLundSweden

Personalised recommendations