Advertisement

Improved Measurement of Regional Glucose Metabolism by Individual Determination of the Lumped and Kinetic Constants in Stroke Patients

  • K. Wienhard
  • A. Gjedde
  • W.-D. Heiss
  • K. Herholz
  • G. Pawlik
Conference paper

Abstract

Positron emission tomography (PET) of [18F]2-fluoro-2-deoxy-D-glucose (FDG) is a generally accepted method for local estimation of glucose metabolism in vivo and has found wide application in clinical studies.

Keywords

Positron Emission Tomography Cereb Blood Flow Regional Glucose Metabolism Phosphorylation Rate Glucose Phosphorylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baron JC, Bousser MG, Comar D, Soussaline F, Castaigne P (1981) Noninvasive tomographic study of cerebral blood flow and oxygen metabolism in vivo. Eur Neurol 20: 273–284PubMedCrossRefGoogle Scholar
  2. 2.
    Barrio JR, MacDonald NS, Robinson GD, Najafi A, Cook JS, Kuhl DE (1981) Remote, semiautomated production of F18-labeled 2-deoxy-2-fluoro-D-glucose. J Nucl Med 22: 372–375PubMedGoogle Scholar
  3. 3.
    Bergström M, Litton J, Eriksson L, Bohm C, Blomqvist G (1982) Determination of object contour from projections for attenuation correction in cranial positron emission tomography. J ComputAssist Tomogr 6: 365–372CrossRefGoogle Scholar
  4. 4.
    Bergström M, Eriksson L, Bohm C, Blomqvist G, Litton J (1983) Correction for scattered radiation in a ring detector positron camera by integral transformation of the projections. J Com put Assist Tomogr 7: 42–50CrossRefGoogle Scholar
  5. 5.
    Brooks RA (1982) Alternative formula for glucose utilization using labeled deoxyglucose. J Nucl Med 23: 538–539PubMedGoogle Scholar
  6. 6.
    Eriksson L, Bohm C, Kesselberg M, Blomqvist G, Litton J, Widen L, Bergström M, Ericson K, Greitz T (1982) A four ring positron camera system for emission tomography of the brain. IEEE Trans Nucl Sci 29: 539–543CrossRefGoogle Scholar
  7. 7.
    Fowler JS, MacGregor RR, Wolf AP, Farrell AA, Karlstrom KI, Ruth TJ (1981) A shielded synthesis system for production of 2-deoxy-2-(18F)fluoro-o-glucose. J Nucl Med 22: 376–380PubMedGoogle Scholar
  8. 8.
    Gjedde A, Diemer NH (1983) Autoradiographic determination of regional brain glucose content. J Cereb Blood Flow Metabol 3: 303–310CrossRefGoogle Scholar
  9. 9.
    Gjedde A, Heiss WD, Wienhard K (1985) Regional analysis of steady-state clearance of fluoro-deoxyglucose into the human brain. In: Hartmann A, Hoyer S (eds) Cerebral blood flow and metabolism measurement. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, pp 404–409Google Scholar
  10. 10.
    Gjedde A, Wienhard K, Heiss WD, Kloster G, Diemer NH, Herholz K, Pawlik G (1985) Comparative regional analysis of 2-fluorodeoxyglucose and methylglucose uptake in brain of four stroke patients. With special reference to the regional estimation of the lumped constant. J Cereb Blood Flow Metabol 5: 163–178CrossRefGoogle Scholar
  11. 11.
    Hawkins RA, Phelps ME, Huang SC, Kuhl DE (1981) Effect of ischemia on quantification of local cerebral glucose metabolic rate in man. J Cereb Blood Flow Metabol 1: 37–52CrossRefGoogle Scholar
  12. 12.
    Heiss WD, Pawlik G, Herholz K, Wagner R, Goldner H, Wienhard K (1984) Regional kinetic constants and CMRglu in normal volunteers determined by dynamic positron emission tomography of (18F)-2-fluoro-2-deoxy-o-glucose. J Cereb Blood Flow Metabol 4: 212–223CrossRefGoogle Scholar
  13. 13.
    Herholz K, Pawlik G, Wienhard K, Heiss WD (1984) Computer assisted mapping in quantitative analysis of cerebral positron emission tomograms. J Comput Assist Tomogr 9: 154–161CrossRefGoogle Scholar
  14. 14.
    Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE (1980) Non-invasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238:E69-E82PubMedGoogle Scholar
  15. 15.
    Hutchins GD, Holden JE, Koeppe RA, Halama JR, Gatley SJ, Nickles RJ (1984) Alternative approach to single-scan estimation of cerebral glucose metabolic rate using glucose analogs, with particular application to ischemia. J Cereb Blood Flow Metabol 4: 35–40CrossRefGoogle Scholar
  16. 16.
    Ido T, Wan CN, Fowler JS, Wolf AP (1977) Fluorination with FZ, a convenient synthesis of 2-deoxy-2-fluoro-D-glucose. J Org Chern 42: 2341–2342CrossRefGoogle Scholar
  17. 17.
    Kloster G, Müller-Platz C, Laufer P (1981) 3-[11C]-methyl-D-glucose, a potential agent for regional glucose utilization studies: synthesis, chromatography and tissue distribution in mice. J Lab Comp Radiopharm 18: 855–863CrossRefGoogle Scholar
  18. 18.
    Laufer P, Kloster G (1982) Remote control synthesis of 3-[11C]-methyl-D-glucose. Int J Appl Radiat Isot 33: 775–776PubMedCrossRefGoogle Scholar
  19. 19.
    Lenzi GL, Frackowiak RS, Jones T (1981) Regional cerebral blood flow (CBF), oxygen utilization (CMRO,) and oxygen extraction ratio (OER) in acute hemispheric stroke. J Cereb Blood Flow Meta boll Suppl 1: S504-S505Google Scholar
  20. 20.
    Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metabol 3: 1–7CrossRefGoogle Scholar
  21. 21.
    Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with [F-18]2-fluoro- 2-deoxy-o-glucose: validation of method. Ann Neurol 6: 371–388PubMedCrossRefGoogle Scholar
  22. 22.
    Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps ME, Ido T, Casella V et al. (1979) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44: 127–137PubMedGoogle Scholar
  23. 23.
    Sokoloff L, Reivich M, Kennedy C, DesRosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J N eurochem 28: 897–916Google Scholar
  24. 24.
    Wienhard K, Pawlik G, Eriksson L, Wagner R, lisen HW, Herholz K, Heiss WD (1983) Kinetic constants of cerebral glucose metabolism in pathological conditions. J Cereb Blood Flow Metabol 3 Suppl l:S474-S475Google Scholar
  25. 25.
    Wienhard K, Pawlik G, Herholz K, Wagner R, Heiss WD (1985) Estimation of local cerebral glucose utilization by positron emission tomography of [F-18]-2-fluoro-2-deoxyD- glucose: a critical appraisal of optimization procedures. J Cereb Blood Flow Metabol 5: 115–125CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • K. Wienhard
    • 1
  • A. Gjedde
    • 2
  • W.-D. Heiss
    • 1
  • K. Herholz
    • 1
  • G. Pawlik
    • 1
  1. 1.Max-Planck-Institut für neurologische ForschungKöln 91 (Merheim)Germany
  2. 2.Panum-Institutet, Kobenhavns UniversitetDK-KobenhavenDenmark

Personalised recommendations