Skip to main content

Local Control of the Cerebral Circulation

  • Conference paper
Cerebral Ischemia and Hemorheology

Abstract

The close interdependence of functional activity, metabolism, and blood flow in the brain was postulated a century ago by Roy and Sherrington [46]. These authors stated that “the chemical products of cerebral metabolism … can cause variations of the calibre of the cerebral vessels” and concluded that “the brain possesses an intrinsic mechanism by which its vascular supply can be varied locally in correspondence with local variations of functional activity.” The present article shows that this working hypothesis has been verified by a number of experiments but cannot explain all aspects of the close adjustment of cerebral blood flow to the local functional and metabolic demands. Several mechanisms exist in addition to the metabolic control system proposed by Roy and Sherrington [46]; they have become visible after the development of techniques which allow the local measurement of blood flow, metabolism, ionic activities, tissue metabolites, vascular reactions, and capillary density in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astrup J, Heuser D, Lassen NA, Nilsson B, Norberg K, Siesjö BK (1978) Evidence against H+ and K+ as the main factors in the regulation of cerebral blood flow: a microelectrode study. In: Ciba Foundation Symposium 56, Cerebral vascular smooth muscle and its control. Elsevier, Amsterdam, pp 313–332

    Google Scholar 

  2. Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol 204: 317–322

    PubMed  CAS  Google Scholar 

  3. Berne RM, Rubio R, Curnish RR (1974) Release of adenosine from ischemic brain. Effect on cerebral vascular resistance and incorporation into cerebral adenine nucleotides. Circ Res 25: 262–271

    Google Scholar 

  4. Betz E, Csornai M (1978) Action and interaction of perivascular H+, K+ and Ca++ on pial arteries. Pflügers Arch 374: 67–72

    Article  PubMed  CAS  Google Scholar 

  5. Betz E, Enzenross HG, Vlahov V (1975) Interactions of ionic mechanisms in the regulation of the resistance of pial vessels. In: Langfitt Langfitt TW, McHenry LC, Reivich M, Wollman H (eds) Cerebral Circulation and Metabolism. Springer, New York, pp 49–51

    Google Scholar 

  6. Boarini DJ, Kassell NF, Sprowell JA, Olin J (1984) Intravertebral artery adenosine fails to alter cerebral blood flow in the dog. Stroke 15: 1057–1060

    Article  PubMed  CAS  Google Scholar 

  7. Britton SL, Lutherer LO, Davies DG (1979) Effect of cerebral extracellular fluid acidity on total and regional cerebral blood flow. J Appl Physiol 47: 818–826

    PubMed  CAS  Google Scholar 

  8. Bumstock G (1975) Purinergic transmission. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of Psychopharmacology, vol 5. Plenum Press, New York, pp 131–194

    Google Scholar 

  9. Bumstock G (1976) Do some nerve cells release more than one transmitter? Neuroscience 1: 239–248

    Article  Google Scholar 

  10. Cameron IR, Caronna J (1976) The effect of local changes in potassium and bicarbonate concentration on hypothalamic blood flow in the rabbit. J Physiol 262: 415–430

    PubMed  CAS  Google Scholar 

  11. Dora E (1985) Adenosine and hypoxic vasodilatation (letter to Editor). J Cereb Blood Flow Metab 5: 621–624

    Article  PubMed  CAS  Google Scholar 

  12. Dora E, Koller A, Kovach AGB (1984) Effect of topical adenosine deaminase treatment on the functional hyperemic and hypoxic responses of cerebrocortical microcirculation. J Cereb Blood Flow Metab 4: 447–457

    Article  PubMed  CAS  Google Scholar 

  13. Emerson TE, Raymond RM (1981) Involvement of adenosine in cerebral hypoxic hyperemia in the dog. Am J Physiol 241: 134–138

    Google Scholar 

  14. Forrester T, Harper AM, MacKenzie ET, Thomas EM (1979) Effect of adenosine triphosphate and some derivatives on cerebral blood flow and metabolism. J Physiol 296: 343–355

    PubMed  CAS  Google Scholar 

  15. Fredholm BB, Hedqvist P (1980) Modulation ofneurotransmission by purine nucleotides and nucleosides. Biochem Pharmacal 29: 1635–1643

    Article  CAS  Google Scholar 

  16. Gregory PC, Boisvert DPJ, Harper AM (1980) Adenosine response on pial arteries, influence of CO2 and local blood pressure. Pflügers Arch 368: 187–192

    Article  Google Scholar 

  17. Haller C, Kuschinsky W (1981) Reactivity of pial arteries to K+ and H+ before and after ischemia induced by air embolism. Microcirculation 1: 141–159

    Google Scholar 

  18. Heinemann U, Lux HD, Gutnick MJ (1977) Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp Brain Res 27: 237–243

    Article  PubMed  CAS  Google Scholar 

  19. Heuser D (1978) The significance of cortical extracellular H+, K+, and Ca++ activities for regulation of local cerebral blood flow under conditions of enhanced neuronal activity. In: Ciba Foundation Symposium 56, Cerebral vascular smooth muscle and its control. Elsevier, Amsterdam, pp 339–348

    Google Scholar 

  20. Hoedt-Rasmussen K, Skinhoj E, Paulson O, Ewald J, Bjerrum JK, Fahrenkrug A, Lassen NA (1967) Regional cerebral blood flow in acute apoplexy. Arch Neurol 17: 271–281

    PubMed  CAS  Google Scholar 

  21. Rossmann KA, Lechtape-Grüter H, Rossmann V (1973) The role of cerebral blood flow for the recovery of the brain after prolonged ischemia. Z Neurol 204: 281–299

    Article  Google Scholar 

  22. Kontos HA, Raper AJ, Patterson JL, jr (1977) Analysis of vasoactivity of local pH, pCO2 and bicarbonate on pial vessels. Stroke 8: 358–360

    Article  PubMed  CAS  Google Scholar 

  23. Kuschinsky W (1982) Role of hydrogen ions in regulation of cerebral blood flow and other regional flows. In: Altura BM ( ed) Ionic regulation of the microcirculation. Karger, Basel, pp 1–19

    Google Scholar 

  24. Kuschinsky W, Suda S, Bünger R, Yaffe S, Sokoloff L (1983) The effects of intravenous norepinephrine on the local coupling between glucose utilization and blood flow in the rat brain. Pflügers Arch 298: 134–138

    Article  Google Scholar 

  25. Kuschinsky W, Suda S, Sokoloff L (1981) Local cerebral glucose utilization and blood flow during metabolic acidosis. Am J Physiol 24: H772–777

    Google Scholar 

  26. Kuschinsky W, Suda S, Sokoloff L (1985) Influence of gamma-hydroxybutyrate on therelationship between local cerebral glucose utilization and local cerebral blood flow in the rat brain. J Cereb Blood Flow Metab 5: 58–64

    Article  PubMed  CAS  Google Scholar 

  27. Kuschinsky W, Wahl M (1978) Local chemical and neurogenic regulation of cerebral vascular resistance. Physiol Rev 58: 656–689

    PubMed  CAS  Google Scholar 

  28. Kuschinsky W, Wahl M (1979) Perivascular pH and pial arterial diameter during bicuculline induced seizures in cats. Pflügers Arch 283: 81–85

    Article  Google Scholar 

  29. Kuschinsky W, Wahl M, Bosse O, Thurau K (1972) Perivascular potassium and pH as determinants of local pial arterial diameter in cats. A microapplication study. Circ Res 31: 240–247

    PubMed  CAS  Google Scholar 

  30. Lassen NA (1968) Brain extracellular pH: the main factor controlling cerebral blood flow. Scand J Clin Lab Invest 22: 247–251

    Article  PubMed  CAS  Google Scholar 

  31. Leniger-Follert, E (1984) Mechanisms of regulation of cerebral microflow during bicuculline-induced seizures in anesthetized cats. J Cereb Blood Flow Metab 4: 150–165

    Article  PubMed  CAS  Google Scholar 

  32. McCulloch J, Edvinsson L, Watt P (1982) Comparison of the effects of potassium and pH on the calibre of cerebral veins and arteries. Pflügers Arch 393: 95–98

    Article  PubMed  CAS  Google Scholar 

  33. McCulloch J, Kelly PAT, Ford I (1982) The effect of apomorphine on the relationship between local cerebral glucose utilization and local cerebral blood flow with an appendix on its statistical analysis. J Cereb Blood Flow Metab 2: 487–499

    Article  PubMed  CAS  Google Scholar 

  34. Moskalenko YY (1975) Regional cerebral blood flow and its control at rest and during increased functional activity. In: Ingvar DH, Lassen NA (eds) Brain work. Munksgaard, Copenhagen, pp 343–351

    Google Scholar 

  35. Nemoto EM, Snyder N, Carroll RG, Morita H (1975) Global ischemia in dogs: cerebrovascular CO2 reactivity and autoregulation. Stroke 6: 425–431

    Article  PubMed  CAS  Google Scholar 

  36. Nicholson C (1980) Modulation of extracellular calcium and its functional implications. Fed Proc 39: 1519–1523

    PubMed  CAS  Google Scholar 

  37. Pannier JL, Weyne J, Demeester G, Leusen I (1972) Influence of changes in the acid base composition of the ventricular system on cerebral blood flow in cats. Pflügers Arch 333: 337–351

    Article  PubMed  CAS  Google Scholar 

  38. Paulson OB (1970) Regional cerebral blood flow in apoplexy due to occlusion of the middle cerebral artery. Neurology 20: 63–77

    PubMed  CAS  Google Scholar 

  39. Paulson OB, Lassen NA, Skinhoj E (1970) Regional cerebral blood flow in apoplexy without arterial occlusion. Neurology 20: 125–138

    PubMed  CAS  Google Scholar 

  40. Phillis JW, DeLong RE, Towner JK (1985) Adenosine deaminase inhibitors enhance cerebral anoxic hyperemia in the rat. J Cereb Blood Flow Me tab 5: 295–299

    Article  CAS  Google Scholar 

  41. Pull I, Mcilwain H (1972) Metabolism of [14C] adenine and derivatives by cerebral tissues, superfused and electrically stimulated. Biochem J 126: 965–973

    PubMed  CAS  Google Scholar 

  42. Purves MJ (1978) Control of cerebral blood vessels: present state of the art. Ann Neurol 3: 377–383

    Article  PubMed  CAS  Google Scholar 

  43. Raichle ME, Grubb RL, Gado MH, Eichling JO, Ter-Pogossian MM (1976) Correlation between regional cerebral blood flow and oxidative metabolism. Arch Neurol 33: 523–526

    PubMed  CAS  Google Scholar 

  44. Raichle ME, Larson KB, Markham J, Depresseux JC, Grubb RL, Ter-Pogossian MM (1981) Measurement of regional oxygen consumption by positron emission tomography. J Cereb Blood Flow Metab 1: S7–8

    Article  Google Scholar 

  45. Rehncrona S, Siesjö BK, Westerberg E (1978) Adenosine and cyclic AMP in cerebral cortex of rats in hypoxia, status epilepticus and hypercapnia. Acta physiol scand 104: 453–463

    Article  PubMed  CAS  Google Scholar 

  46. Roy CS, Sherrington CS (1890) On the regulation of the blood supply of the brain. J Physiol ll: 85–108

    Google Scholar 

  47. Rubio R, Berne R, Bockman EL, Curnish R (1975) Relationship between adenosine concentration and oxygen supply in rat brain. Am J Physiol 228: 1896–1902

    PubMed  CAS  Google Scholar 

  48. Schrader J, Wahl M, Kuschinsky W, Kreutzberg GW (1980) Increase of adenosine content in cerebral cortex of the cat during bicuculline-induced seizure. Pflügers Arch 387: 245–251

    Article  PubMed  CAS  Google Scholar 

  49. Siesjö BK, Hanwehr RV, Nergelius G, Nevander G, Ingvar M (1985) Extra-und intracellular pH in the brain during seizures and in the recovery period following the arrest of seizure activity. J Cereb Blood Flow Metab 5: 47–57

    Article  PubMed  Google Scholar 

  50. Skinhoj E (1966) Regulation of cerebral blood flow as a single function of the interstitial pH in the brain. A hypothesis. Acta neurol scand 42: 604–607

    Article  PubMed  CAS  Google Scholar 

  51. Somjen GG (1979) Extracellular potassium in the mammalian central nervous system. Ann Rev Physiol 41: 159–177

    Article  CAS  Google Scholar 

  52. Symon L, Branston NM, Strong AJ (1976) Autoregulation in acute focal ischemia: an experimental study. Stroke 7: 547–554

    Article  PubMed  CAS  Google Scholar 

  53. Symon L, Crockard HA, Dorsch NWC, Branston NM, Jushasz J (1975) Local cerebral blood flow and vascular reactivity in a chronic stable stroke in baboons. Stroke 6: 482–492

    Article  PubMed  CAS  Google Scholar 

  54. Symon L, Pasztor E, Branston NM (1974) The distribution and density of reduced cerebral blood flow following acute middle cerebral artery occlusion: an experimental study by the technique of hydrogen clearance in baboons. Stroke 5: 355–364

    Article  PubMed  CAS  Google Scholar 

  55. Urbanics R, Leniger-Follert E, Lubbers DW (1978) Time course of changes of extracellular H+ and K+ activities during and after direct electrical stimulation of the brain cortex. Pflügers Arch 378: 47–53

    Article  PubMed  CAS  Google Scholar 

  56. Vetterlein F, Dal Ri H, Schmidt G (1982) Capillary density in rat myocardium during timed plasma staining. Am J Physiol 242: H133–H141

    PubMed  CAS  Google Scholar 

  57. Wahl M, Kuschinsky W (1976) The dilatatory action of adenosine on pial arteries of cats and its inhibition by theophylline. Pflügers Arch 362: 55–59

    Article  PubMed  CAS  Google Scholar 

  58. Waltz AG (1970) Effect of PaCO2 on blood flow and microvasculature of ischemic and nonischemic cerebral cortex. Stroke 1: 27–37

    Article  PubMed  CAS  Google Scholar 

  59. Winn HR, Morii S, Ngai AC, Berne RM (1985) The effect of theophylline, an adenosine receptor blocker, on cerebral blood flow. In: Stefanovich V, Rudolphi K, Schubert P (eds) Adenosine: receptors and modulation of cell function. IRL Press, Oxford, pp 379–390

    Google Scholar 

  60. Winn HR, Rubio R, Berne RM (1979) Brain adenosine production in the rat during 60 seconds of ischemia. Circ Res 45: 486–492

    PubMed  CAS  Google Scholar 

  61. Winn HR, Rubio R, Berne RM (1981) Brain adenosine concentration during hypoxia in rats. Am J Physiol 241: H235–242

    PubMed  CAS  Google Scholar 

  62. Winn HR, Rubio R, Berne RM (1981) The role of adenosine in the regulation of cerebral blood flow. J Cereb Blood Flow Metab 1: 239–244

    Article  PubMed  CAS  Google Scholar 

  63. Winn HR, Welsh JE, Rubio R, Berne RM (1980) Brain adenosine production in rat during sustained alteration in systemic blood pressure. Am J Physiol 239:H636–641

    PubMed  CAS  Google Scholar 

  64. Winn HR, Welsh JE, Rubio R, Berne RM (1980) Changes in brain adenosine during bicuculline induced seizures in rats. Effects of hypoxia and altered systemic blood pressure. Circ Res 47: 568–577

    PubMed  CAS  Google Scholar 

  65. Zetterström T, Vernet L, Ungerstedt U, Tossman U, Jonzon B, Fredholm BB (1982) Purine levels in the intact rat brain. Studies with an implanted perfused hollow fiber. Neurosci Lett 29: 111–115

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuschinsky, W. (1987). Local Control of the Cerebral Circulation. In: Hartmann, A., Kuschinsky, W. (eds) Cerebral Ischemia and Hemorheology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71787-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71787-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71789-5

  • Online ISBN: 978-3-642-71787-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics