Pharmacologic Alteration of Aqueous Humor Dynamics in Normotensive and Glaucomatous Monkey Eyes

  • S. M. Podos
  • C. B. Camras
  • J. B. Serle
  • P.-Y. Lee
Conference paper

Abstract

The results of pharmacologic testing in clinical trials, with drugs that successfully lower intraocular pressure (IOP) in experimental animals, have often been disappointing. The variability in response to drugs amongst the species may be due to differences in anatomy [1]; drug penetration; and/or receptor quantity, quality, location, or regulation [2]. A reliable and readily available model that closely mimics human glaucoma is needed to determine the efficacy and mechanism of action of potential ocular hypotensive agents prior to embarking upon clinical trials. The normal monkey eye is similar to the human eye with respect to iridocorneal angle anatomy, physiology, and response to ocular hypotensive drugs. The argon laser-induced glaucomatous monkey eye may be a satisfactory model to evaluate the potential efficacy of experimental drugs.

Keywords

Vanadate Prostaglandin Epinephrine Indomethacin Prolactin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tripathi RC (1971) Ultrastructure of the exit pathway of the aqueous in lower mammals. Exp Eye Res 12:311–314PubMedCrossRefGoogle Scholar
  2. Nathanson JA (1981) Human ciliary process adrenergic receptor: Pharmacological characterization. Invest Ophthalmol Vis Sci 21:798–804PubMedGoogle Scholar
  3. Camras CB, Podos SM, Rosenthal JS, Lee P-Y, Severin CH (1987) Multiple dosing of Prostaglandin F or epinephrine on cynomolgus monkey eyes: I. Aqueous humor dynamics. iInvest Ophthalmol Vis Sci (in press)Google Scholar
  4. Podos SM, Lee P-Y, Severin C, Mittag T (1984) The effect of vanadate on aqueous humor dynamics in cynomologus monkeys. Invest Ophthalmol Vis Sci 25:359–361PubMedGoogle Scholar
  5. Sobel L, Serie JB, Podos SM, et al (1983) Topical nylidrin and aqueous humor dynamics in rabbits and monkeys. Arch Ophthalmol 101:1281–1283PubMedGoogle Scholar
  6. Serie JB, Stein AJ, Podos SM, Severin CH (1984) Corynanthine and aqueous humor dynamics in rabbits and monkeys. Arch Ophthalmol 102:1385–1388Google Scholar
  7. Siegel MJ, Lee P-Y, Podos SM, Mittag T, Wayne R (1986) Effects of topical pergolide on aqueous dynamics in normal and glaucomatous monkeys. Invest Ophthalmol Vis Sci [Suppl] (in press)Google Scholar
  8. Potter DE, Burke JA (1982) Effects of ergoline derivatives on intraocular pressure and iris function in rabbits and monkeys. Curr Eye Res 2:281–288PubMedCrossRefGoogle Scholar
  9. Camras CB, Bito LZ (1981) Reduction of intraocular pressure in normal and glaucomatous primate (Aotus trivirgatus) eyes by topically applied Prostaglandin F2 alpha. Curr Eye Res 1:205–209PubMedCrossRefGoogle Scholar
  10. Lee P, Podos SM, Severin C (1984) Effect of Prostaglandin F on aqueous humor dynamics of rabbit, cat, and monkey. Invest Ophthalmol Vis Sci 25:1087PubMedGoogle Scholar
  11. Stern FA, Bito LZ (1982) Comparison of the hypotensive and other ocular effects of Prostaglandins E2 and F on cat and rhesus monkey eyes. Invest Ophthalmol Vis Sci 22:588PubMedGoogle Scholar
  12. Crawford K, True B, Kaufman PL (1985) Topical Prostaglandin effects on aqueous humor dynamics in cynomolgus monkeys. Invest Ophthalmol Vis Sci [Suppl] 26:233Google Scholar
  13. Bito LZ, Draga A, Blanco J, Camras CB (1983) Long-term maintenance of reduced intraocular pressure by daily or twice daily topical application of Prostaglandins to cat or rhesus monkey eyes. Invest Ophthalmol Vis Sci 24:312–319PubMedGoogle Scholar
  14. Caprioli J, Sears M, Bausher L, Gregory D, Mead A (1984) Forskolin lowers intraocular pressure by reducing aqueous inflow. Invest Ophthalmol Vis Sci 25:268PubMedGoogle Scholar
  15. Smith BR, Gaster RN, Leopold IH, Zeleznick LD (1984) Forskolin, a potent adenylate cyclase activator, lowers rabbit intraocular pressure. Arch Ophthalmol 102:146–148PubMedGoogle Scholar
  16. Caprioli J, Sears M (1984) Combined effect of forskolin and acetazolamide on intraocular pressure and aqueous flow in rabbit eye. Exp Eye Res 39:47PubMedCrossRefGoogle Scholar
  17. Potter DE, Burke JA, Temple JR (1985) Forskolin suppresses sympathetic neuron function and causes ocular hypotension. Curr Eye Res 4:87–96PubMedCrossRefGoogle Scholar
  18. Lee P-Y, Podos SM, Mittag T, Severin C (1984) Effect of topically applied forskolin on aqueous humor dynamics in cynomolgus monkey. Invest Ophthalmol Vis Sci 25:1206–1209PubMedGoogle Scholar
  19. Gaasterland D, Kupfer C (1974) Experimental glaucoma in the rhesus monkey. Invest Ophthalmol 13:455–457PubMedGoogle Scholar
  20. Quigley HA, Hohman RM (1983) Laser energy levels for trabecular meshwork damage in the primate eye. Invest Ophthalmol Vis Sci 24:1305–1307PubMedGoogle Scholar
  21. Pederson JE, Gaasterland DE (1984) Laser-induced primate glaucoma: I. Progression of cupping. Arch Ophthalmol 102:1689–1692PubMedGoogle Scholar
  22. Radius RL, Pederson JE (1984) Laser-induced primate glaucoma: II. Histopathology. Arch Ophthalmol 102:1693–1698PubMedGoogle Scholar
  23. Lee P-Y, Podos SM, Howard-Williams JR, Severin CH, Rose AD, Siegel MJ (1985) Pharmacological testing in the laser-induced monkey glaucoma model. Curr Eye Res 4:775–781PubMedCrossRefGoogle Scholar
  24. Lee P-Y, Podos SM, Serie JB, Camras CB, Severin CH (1987) Pharmacological testing of multiple dose drugs in the laser-induced monkey glaucoma model. Arch Ophthalmol (in press)Google Scholar
  25. Serie JB, Podos SM, Lustgarten JS, Teitelbaum C, Severin CH (1985) The effect of corynanthine on intraocular pressure in clinical trials. Ophthalmology 92:977–980Google Scholar
  26. Brogliatti B, Rolle T, Messelod M, Carenini BB (1985) A new alpha-blocking agent in the treatment of glaucoma: dapiprazole. Glaucoma 7:232–236Google Scholar
  27. Krupin T, Podos SM, Becker B (1983) Ocular effects of vanadate. Krieglstein GK, Leydhecker W (eds) Glaucoma update IL Springer, Berlin Heidelberg New York Tokyo, pp 25–28Google Scholar
  28. Giuffre G (1985) The effects of Prostaglandin F in the human eye. Graefe’s Arch Clin Exp Ophthalmol 222:139–141CrossRefGoogle Scholar
  29. Badian M, Dabrowski J, Grigoleit HG, Lieb W, Linder E, Rupp W (1984) Effect of forskolineyedrops on the intraocular pressure of healthy male subjects. Klin Mbl Augenheilk 522-526Google Scholar
  30. Sears ML (1985) Regulation of aqueous flow by the adenylate cyclase receptor complex in the ciliary epithelium. Amer J Ophthalmol 100:194–198Google Scholar
  31. Burstein NL, Sears ML, Mead A (1984) Aqueous flow in human eyes is reduced by forskolin, a potent adenylate cyclase activator. Exp Eye Res 39:745–749PubMedCrossRefGoogle Scholar
  32. Mekki QA, Warrington SJ, Turner P (1984) Bromocriptine eyedrops lower intraocular pressure without affecting prolactin levels. Lancet II(4):287–288CrossRefGoogle Scholar
  33. Lewis RA, Schoenwald RD, Barfknecht CF, Phelps CD (1986) Aminozolamide gel: A trial of a topical carbonic anhydrase inhibitor in ocular hypertension. Arch Ophthalmol 104:842–844PubMedGoogle Scholar
  34. Caprioli J, Sears M, Kosley R, Cherill R, Huger F (1985) Cyclase activation and IOP reduction by forskolin analogs. Invest Ophthalmol Vis Sci [Suppl] 26:233Google Scholar
  35. Camras CB, Bito LZ, Eakins KE (1977) Reduction of intraocular pressure by Prostaglandins applied topically to the eyes of conscious rabbits. Invest Ophthalmol Vis Sci 16:1125–1134PubMedGoogle Scholar
  36. Kulkarni PS, Srinivasan BD (1985) Prostaglandins E3 and D3 lower intraocular pressure. Invest Ophthalmol Vis Sci 26:1178–1182PubMedGoogle Scholar
  37. Bito LZ (1984) Comparison of the ocular hypotensive efficacy of eicosanoids and related compounds. Exp Eye Res 38:181PubMedCrossRefGoogle Scholar
  38. Camras CB, Feldman SG, Podos SM, Christensen RE, Gardner SK, Fazio DT (1985) Inhibition of the epinephrine-induced reduction of intraocular pressure by systemic indomethacin in humans. Am J Ophthalmol 100:169–175PubMedGoogle Scholar
  39. Horowitz RS, Camras CB, Lee P-Y, Podos SM (1986) Possible role of Prostaglandins in the reduction of intraocular pressure (IOP) after argon laser trabeculoplasty in cats. Invest Ophthalmol Vis Sci [Suppl] 27:165Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • S. M. Podos
    • 1
  • C. B. Camras
    • 1
  • J. B. Serle
    • 1
  • P.-Y. Lee
    • 1
  1. 1.New YorkUSA

Personalised recommendations