Adaptation of Dictyostelium Discoideum Cells to Chemotactic Signals

  • Peter J. M. Van Haastert
  • René J. W. De Wit
  • Pim M. W. Janssens
  • Fanja Kesbeke
  • B. Ewa Snaar-Jagalska
  • Michiel M. Van Lookeren Campagne
  • Theo M. Konijn
Part of the NATO ASI Series book series (volume 6)


The cellular slime mold Dictyostelium discoideum lives in the soil where it feeds on bacteria. Exhaustion of the food supply induces cell aggregation. Subsequently, cells differentiate to two cell types; spores embedded in a slime droplet on top of a tubular stalk of vacuolized cells. Cell aggregation is mediated by Chemotaxis. Upon starvation some cells start to secrete a chemoattractant which has been identified as cAMP (1). Extracellular cAMP induces two responses, which are both mediated by cell surface receptors. First, cAMP activates adenylate cyclase; the produced cAMP is secreted and may trigger other cells, thus relaying the signal. Second, cAMP induces a chemotactic response by which cells move in the direction of the cAMP source. The combined effects of cAMP relay and Chemotaxis may lead to the accumulation of as many as 100,000 cells in a central collecting point derived from an area of about 1 cm2 (see 2,3 for recent reviews).


Adenylate Cyclase Guanylate Cyclase Pertussis Toxin cAMP Concentration Dictyostelium Discoideum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Konijn, T.M., Van de Meene, J.G.C., Bonner, J.T., and Barkley, D.S., 1967. The acrasin activity of adenosine-3′,5′-cyclic phosphate. Proc. Natl. Acad. Sci. U.S.A. 58: 1152–1154.PubMedCrossRefGoogle Scholar
  2. 2.
    Devreotes, P.N. 1982. Chemotaxis. In: Development of Dictyostelium. (W.F. Loomis, ed, Academic Press, San Diego).Google Scholar
  3. 3.
    Van Haastert, P.J.M., and Konijn, T.M. 1982. Signal transduction in the cellular slime molds. Mol. Cell. Endocrinol. 26: 1–17.PubMedCrossRefGoogle Scholar
  4. 4.
    Konijn, T.M. 1970. Microbiological assay of cyclic 3,5′-AMP. Experientia. 26: 367–369.PubMedCrossRefGoogle Scholar
  5. 5.
    Van Haastert, P.J.M. 1983. Sensory adaptation of Dictyostelium discoideum cells to chemotactic signals. J. Cell Biol. 96: 1559–1565.PubMedCrossRefGoogle Scholar
  6. 6.
    Van Haastert, P.J.M. 1984. A method for studying cAMP-relay in Dictyostelium discoideurn: the effect of temperature on cAMP-relay. J. Gen. Microbiol. 130: 2559–2564.Google Scholar
  7. 7.
    Gerisch, G., Huelser, D., Malchow, D., and Wick, U. 1975. Cell communication by periodic cyclic AMP pulses. Philos. Trans. R. Lond. Biol. Sci. B. 272: 181–192.CrossRefGoogle Scholar
  8. 8.
    Van Haastert, P.J.M., De Wit, R.J.W., Grijpma, Y., and Konijn, T.M. 1982. Identification of a pterin as the acrasin of the cellular slime mold Dictyostelium lacteum. Proc. Nat. Acad. Sci. U.S.A. 79: 6270–6274.CrossRefGoogle Scholar
  9. 9.
    Shimomura, O., Suthers, H.L.B., and Bonner, J.T. 1982. Chemical identity of the acrasin of the cellular slime mold Polysphondylium violaceum. Proc. Natl. Acad. Sci. U.S.A. 79: 7376–7379.PubMedCrossRefGoogle Scholar
  10. 10.
    De Wit, R.J.W., and Konijn, T.M. 1983. Identification of the acrasin of Dictyostelium minutum as a derivative of folic acid. Cell Differentiation 12: 205–210.PubMedCrossRefGoogle Scholar
  11. 11.
    Mato, J.M., and Konijn, T.M. 1977. Chemotactic signals and cyclic GMP accumulation in Dictyostelium. In: Developments and differentiation in the cellular slime moulds. (P. Cappuccinelli and J.M. Ashworth, eds.) Elsevier/North-Holland Biomedical Press, Amsterdam, pp.93–103.Google Scholar
  12. 12.
    Wurster, B, Bozzaro, S., and Gerisch, G. 1978. Cyclic GMP regulation and responses of Polyspondylium violacéurn to chemoattractants. Cell Biol. Int. Rep. 2: 61–69.PubMedCrossRefGoogle Scholar
  13. 13.
    Van Haastert, P.J.M., Van Lookeren Campagne, M.M., and Kesbeke, F. 1983. Multiple degradation pathways of chemoattractant mediated cGMP accumulation in Dictyostelium. Biochem. Biophys. Acta. 756: 67–71.CrossRefGoogle Scholar
  14. 14.
    Ross, F.M., and Newell, P.C. 1981. Streamers: chemotactic mutants of Dictyostelium discoideum with altered cGMP metabolism. J. Gen. Microbiol. 127: 339–350.PubMedGoogle Scholar
  15. 15.
    Van Haastert, P. J. M.,Van Lookeren Campagne, M.M., and Ross, F.M. 1982. Altered cGMP-phosphodiesterase activity in chemotactic mutants of Dictyostelium discoideum. FEBS Lett. 147: 149–152.PubMedCrossRefGoogle Scholar
  16. 16.
    Van Haastert, P.J.M., and Van der Heijden, P.R. 1983. Excitation, adaptation, and deadaptation of the cAMP mediated cGMP response in Dictyostelium discoideum. J. Cell Biol. 96: 347–353.PubMedCrossRefGoogle Scholar
  17. 17.
    Van Haastert, P.J.M., Van Lookeren Campagne, M.M., 1984. Transient kinetics of a cGMP-dependent cGMP-specific phosphodiesterase from Dictyostelium discoideum. J. Cell Biol. 98: 709–716.PubMedCrossRefGoogle Scholar
  18. 18.
    Van Haastert, P.J.M., De Wit, R.J.W., and Konijn, T.M. 1982. Antagonists of chemoattractants reveal separate receptors for cAMP, folic acid, and pterin in Dictyostelium. Exp. Cell Res. 140: 453–456.PubMedCrossRefGoogle Scholar
  19. 19.
    De Wit, R.J.W. 1982. Two distinct types of cell surface folic acid-binding proteins in Dictyostelium discoideum. FEBS Lett. 150: 445–448.CrossRefGoogle Scholar
  20. 20.
    De Wit, R.J.W., Bulgakov, R., Pinas, J.E., and Konijn, T.M. 1985. Relationships between the ligand specificity of cell surface folate binding sites, folate degrading enzymes and cellular responses in Dictyostelium discoideum. Biochem. Biophys. Acta 814: 214–226.CrossRefGoogle Scholar
  21. 21.
    Van Haastert, P.J.M. 1983. Relationship between adaptation of the folic acid and the cAMP mediated cGMP response in Dictyostelium. Biochem. Biophys. Res. Commun. 115: 130–136.PubMedCrossRefGoogle Scholar
  22. 22.
    Van Haastert, P.J.M., and De Wit, R.J.W. 1984. Demonstration of receptor heterogeneity and affinity modulation by nonequilibrium binding experiments. The cell surface cAMP receptor of Dictyostelium discoideum. J. Biol. Chem. 259: 13321–13328.PubMedGoogle Scholar
  23. 23.
    Van Haastert, P.J.M., De Wit, R.J.W., Janssens, P.M.W., Kesbeke, F., and DeGoede, J. 1986. G-protein-mediated interconversion of cell-surface cAMP receptors and their involvement in excitation and desensitization of guanylate cyclase in Dictyostelium discoideum. J. Biol. Chem. 261: 6904–6911.PubMedGoogle Scholar
  24. 24.
    Van Haastert, P.J.M. 1985. cAMP activates adenylate and guanylate cyclase of Dictyostelium discoideum cells by binding to different classes of cell-surface receptors. A study with extracellular Ca Biochim. Biophys. Acta 846: 324–333.CrossRefGoogle Scholar
  25. 25.
    Kesbeke, F., and Van Haastert, P.J.M. 1985. Selective down-regulation of cell surface cAMP-binding sites and cAMP-induced responses in Dictyostelium discoideum. Biochim. Biophys. Acta 847: 33–39.CrossRefGoogle Scholar
  26. 26.
    Van Haastert, P.J.M. 1984. Guanine nucleotides modulate cell surface cAMP-binding sites in membranes from Dictyostelium discoideum. Biochem. Biophys. Res. Commun. 124: 597–604.PubMedCrossRefGoogle Scholar
  27. 27.
    Janssens, P.M.W., Van der Geer, P.L.J., Arents, J.C., and Van Driel, R. 1985. Guanine nucleotides modulate the function of chemotactic cyclic AMP receptors in Dictyostelium discoideum. Mol. Cell. Biochem. 67: 119–124.PubMedCrossRefGoogle Scholar
  28. 28.
    De Wit, R.J.W., and Bulgakov, R. 1985. Guanine nucleotides modulate the ligand properties of cell surface folate receptors in Dictyostelium discoideum. FEBS Lett. 179: 257–261.PubMedCrossRefGoogle Scholar
  29. 29.
    Europe-Finner, G.N., and Newell, P.C. 1985. Inositol 1,4,5-trisphosphate induces cyclic GMP formation in Dictyostelium discoideum. Biochem. Biophys. Res. Commun. 130: 1115–1122.PubMedCrossRefGoogle Scholar
  30. 30.
    Van Haastert, P.J.M., De Wit, R.J.W., and Van Lookeren Campagne, M.M. 1985. Ca2+- or phorbolester-dependent effect of ATP on a subpopulation of cAMP cell-surface receptors in membranes from D.discoideum. A role for protein kinase C. Biochem. Biophys. Res. Commun. 128: 185–192.PubMedCrossRefGoogle Scholar
  31. 31.
    McRobbie, S.J., and Newell, P.C. 1984. A new model for chemotactic signal transduction in Dictyostelium discoideum. Biochem. Biophys. Res. Commun. 123: 1076–1083.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Peter J. M. Van Haastert
    • 1
  • René J. W. De Wit
    • 1
  • Pim M. W. Janssens
    • 1
  • Fanja Kesbeke
    • 1
  • B. Ewa Snaar-Jagalska
    • 1
  • Michiel M. Van Lookeren Campagne
    • 1
  • Theo M. Konijn
    • 1
  1. 1.Cell Biology and Morphogenesis Unit, Zoological LaboratoryUniversity of LeidenLeidenthe Netherlands

Personalised recommendations