Skip to main content

Cell Responses to Phosphoinositide-Hydrolysing Receptors: Some Potential Sites of Modulation

  • Conference paper
Molecular Mechanisms of Desensitization to Signal Molecules

Part of the book series: NATO ASI Series ((ASIH,volume 6))

  • 51 Accesses

Abstract

Many receptors, originally grouped together as Ca2+-mobilising receptors, are now known to share an ability to couple to phospholipase C and to thereby stimulate hydrolysis of a specific class of phospholipids, the phosphoinositides. An important consequence of activation of phospholipase C is that two intracellular products are generated. One of these, inositol 1,4,5-trisphosphate ((1,4,5)IP3, is water-soluble and enters the cytosol; the second product, 1,2 diacylglycerol (DG), remains in the plasma membrane. In addition to their roles as intracellular signal molecules, both (1,4,5)IP3 and DG are substrates for further metabolic pathways that may either inactivate their signalling properties or perhaps generate further intracellular messengers. Clearly, by comparison with receptors that regulate adenylate cyclase activity or the permeability of ion channels, the phosphoinositide-hydrolysing receptors control a more complex signalling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhtar, R.A. & Abdel-Latif, A.A. (1986). J. Neurochem. 46, 96–104.

    Article  PubMed  CAS  Google Scholar 

  • Allison, J.H., Blisner, M.E., Holland, W. H., Hipps, P.P. & Sherman, W.R. (1976). Biochem. Biophys. Res. Commun. 71, 664–670.

    Article  PubMed  CAS  Google Scholar 

  • Barrowman, M.M., Cockcroft, S. & Gomperts, B.D. (1986). Nature (London) 319, 504–507.

    Article  CAS  Google Scholar 

  • Batty, I.R., Nahorski, S. R. & Irvine, R.F. (1985). Biochem. J. 232, 211–215.

    PubMed  CAS  Google Scholar 

  • Berridge, M.J. (1984). Adv. Cyclic Nucleotide Res. 17, 329–335.

    CAS  Google Scholar 

  • Berridge, M.J. & Irvine, R.F. (1984) Nature (London) 320, 631–633.

    Google Scholar 

  • Burgess, G. M., McKinney, J.S., Irvine, R.F. & Putney, J.W. Jr. (1985). Biochem. J. 232, 237–243.

    PubMed  CAS  Google Scholar 

  • Clapper, D.L. & Lee, H.C. (1985). J. Biol. Chem. 260, 13947–13954.

    PubMed  CAS  Google Scholar 

  • Colucci, W.S. & Alexander, R.W. (1986). Proc. Natl. Acad. Sci. USA 83, 1743–1746.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, A.P. (1984). FEBS Lett. 185, 147–150.

    Article  Google Scholar 

  • Downes, C.P. & Stone, M.A. (1986). Biochem. J. 234, 199–204.

    PubMed  CAS  Google Scholar 

  • Drummond, A. H. & Raeburn, C.A. (1984). Biochem. J. 224, 129–136.

    PubMed  CAS  Google Scholar 

  • Evans, T., Hepler, J.R., Masters, S.B., Brown, J.H., & Harden, T.K. (1985). Biochem. J. 232, 751–757.

    PubMed  CAS  Google Scholar 

  • Fleischman, L.F., Chahwala, S.B. & Cantley, L. (1986). Science 231, 407–410.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs, J.B., Sigal, I.S., Poe, M. & Scolnick, E.M. (1984). Proc. Natl. Acad. Sci. USA 81, 5704–5708.

    Article  PubMed  CAS  Google Scholar 

  • Irvine, R.F., Letcher, A. J., Heslop, J.P. & Berridge, M.J. (1986). Nature (London). 320, 631–634.

    Article  CAS  Google Scholar 

  • Itoh, H., Okajima, F. & Ui, M. (1984). J. Biol. Chem. 259, 15464–15473.

    PubMed  CAS  Google Scholar 

  • Janowsky, A., Labarca, R. & Paul, S.M. (1984). Eur. J. Pharmacol. 102, 193–194.

    Article  PubMed  CAS  Google Scholar 

  • Katada, T., Gilman, A. G., Watanabe, Y., Bauer, S. & Jakobs, K.H. (1985). Eur. J. Biochem. 151, 41–437.

    Article  Google Scholar 

  • Kent, R.S. & DeLean, A. & Lefkowitz, R. J. (1980). Mol. Pharmacol. 17, 14–23.

    PubMed  CAS  Google Scholar 

  • Leeb-Lundberg, L.M.F., Cotecchia, S., Lomasney, J.W., DeBarnardis, J.F., Lefkowitz, R. J. & Caron, M. G. (1985). Proc. Natl. Acad. Sci. USA 82, 5651–5655.

    Article  PubMed  CAS  Google Scholar 

  • Litosch, I., Wallis, C. & Fain, J.N. (1985). J. Biol. Chem. 260, 5464–5471.

    PubMed  CAS  Google Scholar 

  • Lynch, C.J., Charest, R., Bocckino, S.B., Exton, J.H. & Blackmore, P.F. (1985). J. Biol. Chem. 260, 2844–2851.

    PubMed  CAS  Google Scholar 

  • Martin, T.F.J., Lucas, D.O., Bajjalieh, S.M. & Kowalchyk, J.A. (1986). J. Biol. Chem. 261, 2918–2927.

    PubMed  CAS  Google Scholar 

  • Pollock, W.K. & Maclntyre, D.E. (1986). Biochem. J 234, 67–73.

    PubMed  CAS  Google Scholar 

  • Putney, J.W. Jr. (1986). Cell Calcium 7, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Rodbell, M. (1985). Trends Biochem. Sci. 10, 461–464.

    Article  CAS  Google Scholar 

  • Spat, A., Bradford, P.G., McKinney, J.S., Rubin, R.P. & Putney, J.W. Jr. (1986). Nature (London) 319, 514–516.

    Article  CAS  Google Scholar 

  • Stephenson, R.P. (1956). Br. J. Pharmacol. 11, 379–393.

    CAS  Google Scholar 

  • Storey, D.J., Shears, S. B., Kirk, C.J. & Michell, R.H. (1984). Nature (London) 312, 374–376.

    Article  CAS  Google Scholar 

  • Streb, H., Irvine, R.F., Berridge, M.J. & Schulz, I. (1983). Nature (London) 306, 67–69.

    Article  CAS  Google Scholar 

  • Sweet, R.W., Yokoyama, S., Kamata, T., Feramisco, J.R., Rosenberg, M. & Gross, M. (1984). Nature (London) 321, 273–275.

    Article  Google Scholar 

  • Taylor, C.W. & Merritt, J.E. (1986). Trends Pharmacol. Sci. (in press).

    Google Scholar 

  • Taylor, C.W., Merritt, J.E., Putney, J.W. Jr. & Rubin, R.P. (1986). Biocem. J. (in press).

    Google Scholar 

  • Taylor, M.V., Metcalfe, J.C., Hesketh, T. R., Smith, G.A. & Moore, J.A. (1984). Nature (London) 312, 462–465.

    Article  CAS  Google Scholar 

  • Ueda, T., Cheuh, S-H., Noel, M. W. & Gill, D.L. (1986). J. Biol. Chem. 261, 3184–3192.

    PubMed  CAS  Google Scholar 

  • Uhing, R.J., Prpic, V., Jiang, H. & Exton, J.H. (1986). J. Biol. Chem. 261, 2140–2146.

    PubMed  CAS  Google Scholar 

  • Van Dongen, C.J., Zwiers, H., DeGraan, P.N.E. & Gispen, W. H. (1985). Biochem. Biophys. Res. Commun. 128, 1219–1227.

    Article  PubMed  Google Scholar 

  • Weiss, S.J. & Putney, J.W. Jr. (1980). Biochem. J. 194, 46 3–468.

    Google Scholar 

  • Wolf, M., LeVine, H., May, S.W. Jr., Cuatrecasas, P. & Sahyoun, N. (1985). Nature (London) 317, 546–549.

    Article  CAS  Google Scholar 

  • Zatz, M. (1985). J. Neurochem. 45, 95–100.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Taylor, C.W. (1987). Cell Responses to Phosphoinositide-Hydrolysing Receptors: Some Potential Sites of Modulation. In: Konijn, T.M., Van der Wel, H., Van Haastert, P.J.M., Houslay, M.D., Van der Starre, H. (eds) Molecular Mechanisms of Desensitization to Signal Molecules. NATO ASI Series, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71782-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71782-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71784-0

  • Online ISBN: 978-3-642-71782-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics