Reactive Collision Dynamics of the Collision System Mg + H2 Using Far Wing Laser Scattering

  • A. M. Lyyra
  • P. D. Kleiber
  • K. M. Sando
  • W. C. Stwalley
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 16)

Abstract

The far wing absorption of laser light to the collision complex MgH2 leads to nonreactive formation of excited state magnesium, Mg*, and reactive formation of MgH [1]. Far wing absorption of laser light is monitored by observation of the final product (Mg* or MgH) as a function of pump laser detuning from the magnesium resonance line. We monitor production of MgH (v″ = 0) rotational levels J″ = 6 and J″ = 23, close to low J and high J maxima of a bimodal rotational distribution, respectively. For this we use laser-induced fluorescence in a two laser pump and probe experiment. We also monitor the competing nonreactive channel Mg* by observation of resonance fluorescence Mg (31P 1 0 - 31S0). The onset of the reactive channel in the Mg + H2 system is highlighted through a comparison with far wing profiles from the nonreactive collision system Mg + H2 and the reactive system Mg + H2 [1]. We have developed a simple excited state dynamics model for the theoretical interpretation of our data. This model uses standard quasistatic theory to estimate the absorption probability as a function of detuning of the laser frequency from resonance. The potential energy curve data [2] is limited to fixed geometries, C2v and C∞v. Based on this, only rough comparisons are possible between the dynamics model and experiment.

Keywords

Magnesium Anisotropy Helium Sevin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. D. Kleiber, A. M. Lyyra, K. M. Sando, S. P. Heneghan and W. C. Stwalley, Phys. Rev. Lett. 54, 2003 (1985); A. M. Lyyra, K. M. Sando and P. D. Kleiber, Phys. Rev. A XX, xxxx (1986).ADSCrossRefGoogle Scholar
  2. 2.
    P. Chaquin, A. Sevin and H. Yu, J. Phys. Chem. 89, 2813 (1985).CrossRefGoogle Scholar
  3. 3.
    A. Jablonski, Phys. Rev. 68, 78 (1945).ADSCrossRefGoogle Scholar
  4. 4.
    A. Gallagher, in Spectral Lines Shapes, Volume II, edited by K. Burnett (de Gruyter, Berlin, 1982 ), p. 755.Google Scholar
  5. 5.
    P. Arrowsmith, S. H. P. Bly, P. E. Charters and J. C. Polanyi, J. Chem. Phys. 79, 283 (1983).ADSCrossRefGoogle Scholar
  6. 6.
    T. F. Maguire, P. R. Brooks and R. F. Curl Jr., Phys. Rev. Lett. 50, 1918 (1983); P. Hering, P. R. Brooks, R. F. Curl Jr., R. S. Judson and R. S. Lowe, Phys. Rev. Lett. 44, 687 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    W. H. Breckenridge and H. Umemoto, J. Chem. Phys. 75, 698 (1981).ADSCrossRefGoogle Scholar
  8. 8.
    W. H. Breckenridge and H. Umemoto, J. Chem. Phys. 80, 4168 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    P. D. Kleiber, A. M. Lyyra, K. M. Sando, V. Zafiropulos and W. C. Stwalley, submitted to J. Chem. Phys.Google Scholar
  10. 10.
    A. R. Malvern, J. Phys. B 11, 831 (1978).ADSCrossRefGoogle Scholar
  11. 11.
    P. S. Herman and K. M. Sando, J. Chem. Phys. 68, 1152 (1978).ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • A. M. Lyyra
    • 1
    • 2
    • 3
  • P. D. Kleiber
    • 1
    • 2
    • 3
  • K. M. Sando
    • 1
    • 2
    • 3
  • W. C. Stwalley
    • 1
    • 2
    • 3
  1. 1.Department of PhysicsUniversity of IowaIowa CityUSA
  2. 2.Department of ChemistryUniversity of IowaIowa CityUSA
  3. 3.Iowa Laser FacilityUniversity of IowaIowa CityUSA

Personalised recommendations