Advertisement

Pathophysiologie der Erregungsleitung

  • Wolfgang Tackman
  • Hans-Peter Richter
  • Manfred Stöhr

Zusammenfassung

Nervenkompressionssyndrome gehen in Abhängigkeit von den jeweiligen anatomischen und pathogenetischen Gegebenheiten mit unterschiedlichen Schädigungsmustern einher, deren morphologische Besonderheiten in Kap. 1 dargestellt wurden. Diese verschiedenartigen Läsionstypen wirken sich nachteilig auf die Impulsleitung in den betroffenen Nervenfasern — mit entsprechenden motorischen, sensiblen und vegetativen Funktionsstörungen — aus. Außerdem kann es am Ort der Läsion zu einer pathologischen, d.h. ektopischen Impulsentstehung mit motorischen und besonders sensiblen Reizsymptomen kommen. Im folgenden werden die normale Impulsleitung und deren Modifikationen bei Nervenkompressionssyndromen — und die entsprechenden klinischen und elektrodiagnostischen Konsequenzen — dargestellt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Anderson, M.H., Fullerton, P.M., Gilliatt, R.W., Hern, J.E.C., (1970) Changes on the forearm associated with median nerve compression at the wrist in the guinea-pig. J Neurol Neurosurg Psychiatry 33: 70–79PubMedCrossRefGoogle Scholar
  2. Bernstein, J.J., Bernstein, M.E., Wells, M.R., (1978) Spinal cord regeneration and axonal sprouting in mammals. In: Waxman, S.G., (ed) Physiology and pathobiology of axons. Raven, New York, pp 407–420Google Scholar
  3. Bostock, H., Sears, T.A., (1976) Continuous conduction in demyelinated mammalian nerve fibers. Nature 263: 786–787PubMedCrossRefGoogle Scholar
  4. Bostock, H., Sears, T.A., (1978) The internodal axon membrane: electrical excitability and continuous conduction in segmental demyelination. J Physiol (Lond) 280: 273–301Google Scholar
  5. Brill, M.H., Waxman, S.G., Moore, J.W., Joyner, R.W., (1977) Conduction velocity and spike configuration in myelinated fibres: computed dependence on internode distance. J Neurol Neurosurg Psychiatry 40: 769–774PubMedCrossRefGoogle Scholar
  6. Brown, W.F., Ferguson, G.G., Jones, M.W., Yates, S.K., (1976) The location of conduction abnormalities in human entrapment neuropathies. Can J Neurol Sci 3: 111–122PubMedGoogle Scholar
  7. Causey, G., Stratman, C.J., (1953) The spread of failure of conduction in degenerated mammalian nerve. J Physiol (Lond) 121: 215–223Google Scholar
  8. Cragg, B.G., Thomas, P.K., (1961) Changes in conduction velocity and fiber size proximal to peripheral nerve lesions. J Physiol (Lond) 157: 315–327Google Scholar
  9. Cragg, B.G., Thomas, P.K., (1964 a) Changes in nerve conduction in experimental allergic neuritis. J Neurol Neurosurg Psychiatry 27: 106–115Google Scholar
  10. Cragg, B.G., Thomas, P.K., (1964 b) The conduction velocity of regenerated peripheral nerve fibers. J Physiol (Lond) 171: 164–175Google Scholar
  11. Davis, F.A., Jacobson, S., (1971) Altered thermal sensitivity in injured and demyelinated nerve: A possible model of temperature effects in multiple sclerosis. J Neurol Neurosurg Psychiatry 34: 551–561PubMedCrossRefGoogle Scholar
  12. DeBaecque, C., Raine, C.S., Spencer, P.S., (1976) Copper binding at PNS nodes of Ran vier during demyelination and remyelination in the peripheral window. Neuropathol Appl Neurobiol 6: 459–470CrossRefGoogle Scholar
  13. Ebeling, P., Gilliatt, R.W., Thomas, P.K., (1960) A clinical and electrical study of ulnar nerve lesions in the hand. J Neurol Neurosurg Psychiatry 23: 1–9PubMedCrossRefGoogle Scholar
  14. Fleming, J.W., Lenman, J.A.R., Stewart, W.K., (1972) Effect of magnesium on nerve conduction velocity during regular dialysis. J Neurol Neurosurg Psychiatry 35: 342–355PubMedCrossRefGoogle Scholar
  15. Gilliatt, R.W., Harrison, J.G., (1984) Nerve compression and entrapment. In: Asbury, A.K., Gilliatt, R.W., (eds) Peripheral nerve disorders. Butterworth, London, pp 243–286Google Scholar
  16. Hardy, W.L., (1971) Computed dependence of conduction speed in myelinated axons of geometric parameters ( Abstract ). Biophys J 11: 238Google Scholar
  17. Huxley, A.F., Stämpfli, R., (1949) Evidence for saltatory conduction in peripheral myelinated nerve fibres. J Physiol (Lond) 108: 315–339Google Scholar
  18. Kaeser, H.E., Lambert, E.H., (1962) Nerve function studies in experimental polyneuritis. Electroencephalogr Clin Neurophysiol (Suppl) 22: 29–35Google Scholar
  19. Koles, Z.J., Rasminsky, M., (1972) A computer simulation of conduction in demyelinated nerve fibres. J Physiol (Lond) 227: 351–364Google Scholar
  20. Kraft, G.H., (1975) Serial nerve conduction and electromyographic studies in experimental allergic neuritis. Arch Phys Med Rehabil 56: 333–340PubMedGoogle Scholar
  21. Landon, D.N., Hall, S., (1976) The myelinated nerve fibre. In: Landon, D.N., (ed) The peripheral nerve. Chapman & Hall, London, pp 1–105Google Scholar
  22. Lehmann, H.J., Ule, G., (1964) Electrophysiological findings and structural changes in circumscript inflammation of peripheral nerves. Prog Brain Res 6: 169–173CrossRefGoogle Scholar
  23. McDonald, W.I., (1963) The effects of experimental demyelinisation on conduction in peripheral nerve: A histological and electrophysiological study. 1. Clinical and histological observations. Brain 86: 481–500Google Scholar
  24. McDonald, W.I., (1974) Pathophysiology in multiple sclerosis. Brain 97: 179–196PubMedCrossRefGoogle Scholar
  25. McDonald, W.I., Kocen, R.S., (1975) Diphtheritic neuropathy. In: Dyck, P.J., Thomas, P.K., Lambert, E.H., (eds) Peripheral neuropathy. Saunders, Philadelphia, pp 1281–1300Google Scholar
  26. McDonald, W.I., Sears, T.A., (1970) The effects in experimental demyelination on conduction in the central nervous system. Brain 93: 583–598PubMedCrossRefGoogle Scholar
  27. Morgan-Hughes, J.A., (1968) Experimental diphtheritic neuropathy. A pathological and electro¬physiological study. J Neurol Sci 7: 157–175Google Scholar
  28. Neary, D., Eames, R.A., (1975) The pathology of ulnar nerve compression in man. Neuropath Appl Neurobiol 1: 69–88CrossRefGoogle Scholar
  29. Nielsen, V.K., Osgaard, O., Trojaborg, W., (1980) Interfascicular neurolysis in chronic ulnar nerve lesions at the elbow: An electrophysiological study. J Neurol Neurosurg Psychiatry 43: 272–280Google Scholar
  30. Olney, R.K., Miller, R.G., (1984) Conduction block in compression neuropathy: Recognition and quantification. Muscle Nerve 7: 662–667Google Scholar
  31. Paintal, A.S., (1978) Conduction properties of normal peripheral mammalian axons. In: Waxman, S.G., (ed) Physiology and pathobiology of axons. Raven, New York, pp 131–144Google Scholar
  32. Rasminsky, M., (1973) The effects of temperature on conduction in demyelinated single nerve fibers. Arch Neurol 28: 287–292PubMedGoogle Scholar
  33. Rasminsky, M., (1978) Physiology of conduction in demyelinated axons. In: Waxman, S.G., (ed) Physiology and pathobiology of axons. Raven, New York, pp 361–376Google Scholar
  34. Rasminsky, M., Sears, T.A., (1972) Internodal conduction in undissected demyelinated nerve fibres. J Physiol (Lond) 277: 323–350Google Scholar
  35. Raymond, S.A., Lettvin, J.Y., (1978) Aftereffects of activity in peripheral axons as a clue to nervous coding. In: Waxman, S.G., (ed) Physiology and pathobiology of axons. Raven, New York, pp 203–225Google Scholar
  36. Rudge, P., (1974) Tourniquet paralysis with prolonged conduction block: An electrophysiological study. J Bone Joint Surg [Br] 56: 716–720Google Scholar
  37. Schröder, J.M., (1968) Die Hyperneurotisation Büngnerscher Bänder bei der experimentellen Isoniazid-Neuropathie. Virchows Arch [Cell Pathol] 1: 131–156Google Scholar
  38. Sears, T.A., (1979) Nerve conduction in demyelination, amyelination and early regeneration. In: Aguayo, A.J., Karpati, G., (eds) Current topics in nerve and muscle research: Selected papers of the symposia held at the 4th International Congress on Neuromuscular Diseases, Montreal, Canada, Sept. 17–21. 1978. Excerpta Medica, Amsterdam Oxford, pp 181–188Google Scholar
  39. Smith, R.S., Koles, Z.J., (1970) Myelinated nerve fibres: Computed effect of myelin thickness on conduction velocity. Am J Physiol 219: 1256–1258Google Scholar
  40. Spencer, P.S., Weinberg, H.J., (1978) Axonal specification of Schwann cell expression and myelination. In: Waxman, S.G., (ed) Physiology and pathobiology of axons. Raven, New York, pp 389–405Google Scholar
  41. Stämpfli, R., Hille, B., (1976) Electrophysiology of the peripheral myelinated nerve. In: Llinas, R., Precht, W., (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 3–32Google Scholar
  42. Stöhr, M., (1975) Neurogener Jitter und intermittierende Blockierungen bei posttraumatischer Reinnervation. EEG EMG 6: 63–69Google Scholar
  43. Stöhr, M., (1981 a) Activity-dependent variations in threshold and conduction velocity of human sensory fibers. J Neurol Sci 49: 47–54Google Scholar
  44. Stöhr, M., (1981b) Modification of the recovery-cycle of human median nerve by ischemia. J Neurol Sci 51: 171–180PubMedCrossRefGoogle Scholar
  45. Stöhr, M., Schümm, F., Reill, P., (1977) Retrograde changes in motor and sensory conduction velocity after nerve injury. J Neurol 214: 281–287PubMedCrossRefGoogle Scholar
  46. Stöhr, M., Petruch, F., Scheglmann, K., Schilling, K., (1978) Retrograde changes of nerve fibers with the Carpal Tunnel Syndrome. J Neurol 218: 287–292CrossRefGoogle Scholar
  47. Sumner, A., (1978) Physiology of dying-back neuropathies. In: Waxman, S.G., (ed) Physiology and pathobiology of axons. Raven, New York, pp 349–359Google Scholar
  48. Swadlow, H.A., Waxman, S.G., (1978) Activity-dependent variations in the conduction properties of central axons. In: Waxman, S.G., (ed) Physiology and pathobiology of axons. Raven, New York, pp 191–202Google Scholar
  49. Tasaki, I., (1953) Nervous transmission. Thomas, Springfield/ILGoogle Scholar
  50. Tasaki, I., (1955) New measurement of the capacity and the resistance of the myelin sheath and the nodal membrane of the isolated frog nerve fiber. Am J Physiol 181: 639–650PubMedGoogle Scholar
  51. Thomas, P.K., (1960) Motor nerve conduction in the carpal tunnel syndrome. Neurology (Minneap) 10: 1045–1050Google Scholar
  52. Trojaborg, W., (1977) Prolonged conduction block with axonal degeneration: An electrophysiological study. J Neurol Neurosurg Psychiatry 4: 50–57CrossRefGoogle Scholar
  53. Waxman, S.G., (1980 a) Determinations of conduction velocity in myelinated nerve fibers. Muscle Nerve 3: 141–150Google Scholar
  54. Waxman, S.G., ( 1980 b) The structural basis for axonal conduction abnormalities in demyelinating diseases. In: Desmedt, J.E., (ed) Clinical uses of cerebral, brainstem and spinal somatosensory evoked potentials. Karger, Basel, pp 170–189Google Scholar
  55. Waxman, S.G., Bennett, M.V.L., (1972) Relative conduction velocities of small myelinated and non-myelinated fibres in the central nervous system. Nature 238: 217–219CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Wolfgang Tackman
    • 1
  • Hans-Peter Richter
    • 2
  • Manfred Stöhr
    • 3
  1. 1.Neurologische Klinik der WeserberglandklinikHöxterGermany
  2. 2.Neurochirurgische Klinik der Städtischen Kliniken FuldaFuldaGermany
  3. 3.Neurologische Klinik des Zentralklinikums AugsburgAugsburgGermany

Personalised recommendations