Skip to main content

Experimental Verification of Regenerative Pulsations and Chaos

  • Chapter
Instabilities and Chaos in Quantum Optics

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 34))

Abstract

Experiments are described which verify the basic principles of regenerative pulsations and the Ikeda instability. The regenerative pulsations of an intrinsic optical bistable device resemble those we obtain from a noise-free computer simulation. The agreement improves when the pulsation frequency is much lower than that of the laser noise. Bifurcations up to period-8 and various paths to chaos are seen in a hybrid optical experiment, consistent with the theoretical predictions including real noise levels. A test for distinguishing a chaotic system from one that is simply noisy is outlined. Finally, we describe the apparent observation of instabilities and chaos in an intrinsic cavity-less bistable device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.L. McCall: Appl. Phys. Lett. 32, 285 (1978)

    Article  ADS  Google Scholar 

  2. J.L. Jewell, H.M. Gibbs, S.S. Tarng, A.C. Gossard, W. Wiegmann: Appl. Phys. Lett. 40, 291 (1982)

    Article  ADS  Google Scholar 

  3. H.M. Gibbs, S.L. McCall, T.N.C. Venkatesan, A.C. Gossard, A. Passner, W. Wieg- mann:CLEA 1979; Appl. Phys. Lett. 35, 451 (1979);

    Article  ADS  Google Scholar 

  4. H. Walther, K.W. Rothe (eds.): Laser Spectroscopy IV, Springer Ser. Opt. Sci., Vol. 21 (Springer, Berlin, Heidelberg 1979) p. 441

    Google Scholar 

  5. M.D. Sturge: Phys. Rev. 127, 768 (1962)

    Article  ADS  Google Scholar 

  6. Predicted in R. Bonifacio, L.A. Lugiato: Lett. Nuovo Cimento 21, 510 (1978)

    Article  Google Scholar 

  7. K. Ikeda: Opt. Commun. 30, 257 (1979)

    Article  ADS  Google Scholar 

  8. K. Ikeda, H. Diado, O. Akimoto: Phys. Rev. Lett. 45, 709 (1980)

    Article  ADS  Google Scholar 

  9. H.M. Gibbs, F.A. Hopf, D.L. Kaplan, R.L. Shoemaker: Phys. Rev. Lett. 46, 474 (1981)

    Article  ADS  Google Scholar 

  10. F.A. Hopf, D.L. Kaplan, H.M. Gibbs, R.L. Shoemaker: Phys. Rev. A25, 2172 (1982). Throughout the present chapter we simplify the discussion by taking the period to be precisely a multiple of t R. The real period is always somewhat longer, and its magnitude is discussed here [8.8].

    Article  MathSciNet  ADS  Google Scholar 

  11. M.W. Derstine, H.M. Gibbs, F.A. Hopf, D.L. Kaplan: Phys. Rev. A (Rapid commun.) 26, 3720 (1982)

    ADS  Google Scholar 

  12. E.N. Lorenz: J. Atmos. Sci. 20, 130 (1963)

    Article  ADS  Google Scholar 

  13. M.J. Feigenbaum: Los Alamos Science 1, 4 (1980)

    MathSciNet  Google Scholar 

  14. PS. Lindsay: Phys. Rev. Lett. 47, 1349 (1981);

    Article  ADS  Google Scholar 

  15. J. Testa, J. Perez, C. Jeffries: Phys. Rev. Lett. 48, 714 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  16. J.P. Crutchfield, B.A. Huberman: Phys. Lett. 77A, 407 (1980)

    MathSciNet  ADS  Google Scholar 

  17. W. Lauterborn, E. Cramer: Phys. Rev. Lett. 47, 1445 (1981);

    Article  ADS  Google Scholar 

  18. J. Chrostowski: Phys. Rev. A26, 3023 (1982);

    Article  ADS  Google Scholar 

  19. R.W. Rollins, E.R. Hunt: Phys. Rev. Lett. 49, 1295 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  20. J.P. Gollub, S.V. Benson: J. Fluid Mech. 100, 449 (1980);

    Article  ADS  Google Scholar 

  21. H.L. Swinney, J.P. Gollub (eds.): Hydrodynamic Instabilities and the Transition to Turbulence, 2nd ed., Topics Appl. Phys., Vol. 45 (Springer, Berlin, Heidelberg 1985)

    MATH  Google Scholar 

  22. S.N. Chow: Talk presented at the workshop on Coupled Nonlinear Oscillators, Los Alamos, NM (1981)

    Google Scholar 

  23. M.W. Derstine, H.M. Gibbs, F.A. Hopf, D.L. Kaplan: Phys. Rev. A26, 3720 (1982)

    Article  ADS  Google Scholar 

  24. K. Ikeda, K. Kondo, O. Akimoto: Phys.Rev. Lett. 49, 1467 (1982)

    Article  ADS  Google Scholar 

  25. E. Ott, J. York: Phys. Rev. Lett. 48, 1507 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Brandstater, J. Swift, H.L. Swinney, A. Wolf, J.D. Farmer, E. Jen, J.P. Crutchfield: Phys. Rev. Lett. 51, 1442 (1982);

    Article  MathSciNet  ADS  Google Scholar 

  27. P. Grassberger, I. Procaccia: Phys. Rev. Lett. 50, 346 (1983);

    Article  MathSciNet  ADS  Google Scholar 

  28. P. Grassberger, I. Procaccia: Phys. Rev. A28, 2591 (1983)

    Article  ADS  Google Scholar 

  29. M.W. Derstine, H.M. Gibbs, F.A. Hopf, L.D. Sanders: J. Opt. Soc. Am. B1, 464 (1984) and Phys. Rev. Lett., submitted

    ADS  Google Scholar 

  30. D. Ruelle, F. Takens: Commun. Math. Phys. 20, 167 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. R. Shaw: Z. Naturforsch. 36A, 80 (1981);

    ADS  Google Scholar 

  32. J.D. Farmer: Physica 4D, 566 (1982);

    MathSciNet  Google Scholar 

  33. J.P. Crutchfield: In Evolution of Order and Chaos, ed. by H. Haken, Springer Ser. Syn., Vol. 17 (Springer, Berlin, Heidelberg 1982) p. 215

    Google Scholar 

  34. L.T. Arecchi, R. Meucci, G. Puccioni, J. Tredicce: Phys. Rev. Lett. 49, 1217 (1982)

    Article  ADS  Google Scholar 

  35. N.B. Abraham, M.D. Coleman, M. Maeda, J.C. Wesson: App. Phys. B28, 169 (1982)

    ADS  Google Scholar 

  36. M. Maeda, N.B. Abraham: Phys. Rev. A20, 3395 (1982)

    Article  ADS  Google Scholar 

  37. F.A. Hopf, M.W. Derstine, H.M. Gibbs, M.C. Rushford: In Optical Bistability II, ed. by C.M. Bowden, H.M. Gibbs, and S.L. McCall (Plenum, New York 1984) p. 68

    Google Scholar 

  38. H. Nakatsuka, S. Asaka, H. Itoh, K. Ikeda, M. Matsuoka: Phys. Rev. Lett. 50, 109 (1983)

    Article  ADS  Google Scholar 

  39. R.G. Harrison, W.S. Firth, C.A. Emshary, I.A. Al-Saidi: Phys. Rev. Lett. 51, 562 (1983)

    Article  ADS  Google Scholar 

  40. R.G. Harrison, W.S. Firth, I.A. Al-Saidi: Phys. Rev. Lett. 53, 258 (1984)

    Article  ADS  Google Scholar 

  41. J.E. Bjorkholm, P.W. Smith, W.J. Tomlinson, A.E. Kaplan: Opt. Lett. 6, 345 (1981). Our experiment differs from the device described t here only by the location of the pinhole. The pinhole in our device is located before the detector rather than between the mirror and the sodium cell.

    Article  ADS  Google Scholar 

  42. H.G. Winful, G. Cooperman: Appl. Phys. Lett. 40, 29 (1982)

    Article  Google Scholar 

  43. K. Ikeda, O. Akimoto: Phys. Rev. Lett. 48, 617 (1982);

    Article  MathSciNet  ADS  Google Scholar 

  44. Y. Silberberg, I. Bar Joseph: Phys. Rev. Lett. 48, 1541 (1982);

    Article  ADS  Google Scholar 

  45. J.A. Goldstone, E.A. Garmire: IEEE J. QE-19, 208 (1983)

    Article  Google Scholar 

  46. M. LeBerre, E. Ressayre, A. Tallet, K. Tai, F.A. Hopf, H.M. Gibbs, J.V. Moloney: Postdeadliine Paper PDD5, IQEC (1984); and in preparation

    Google Scholar 

  47. N.B. Abraham: Laser Focus, 73 (May 1983). For a overview of chaos in a variety of systems see N.B. Abraham, J.P. Gollub, Harry L. Swinney: Physica 11D, 252 (1984)

    Google Scholar 

  48. R.S. Gioggia, A. Albano, R.M. Searle, T. Chyba, N.B. Abraham: J. Opt. Soc. Am. B1, 499 (1984)

    ADS  Google Scholar 

  49. R.G. Harrison, D.J. Biswas: Prog. Quantum Electron. 10, 147 (1985)

    Article  ADS  Google Scholar 

  50. J.R. Ackerhalt, P.W. Milonni, M.L. Smith: Phys. Rep. 128, 205 (1985)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Derstine, M.W. et al. (1987). Experimental Verification of Regenerative Pulsations and Chaos. In: Arecchi, F.T., Harrison, R.G. (eds) Instabilities and Chaos in Quantum Optics. Springer Series in Synergetics, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71708-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71708-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71710-9

  • Online ISBN: 978-3-642-71708-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics