Skip to main content

Single- and Multi-Mode Operation of a Laser with an Injected Signal

  • Chapter

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 34))

Abstract

This chapter contains several new results on the steady-state and linear stability properties of a laser with an injected signal, and a brief review of selected time- dependent studies. The steady-state analysis assumes a plane-wave profile for the laser field and for the incident signal, but is more general than previous models because it applies to a ring-cavity resonator whose mirrors have an arbitrary reflectivity, and to active media with an arbitrary small-signal gain per pass. The results include a survey of the dependence of the output on the input field for a number of typical operating conditions, and a study of the longitudinal variations of the field modulus inside the cavity. The linear stability analysis generalizes earlier investigations to include the case of a multimode ring cavity in the mean-field limit, a restriction that appears unavoidable at the present time. Off-resonant modes display wide domains of instability and suggest that earlier single-mode dynamical studies should be revisited. Our survey of the time-dependent output oscillations is limited to currently published single-mode operation results because work is currently in progress on multi-mode extensions. However, this survey does include discussion of several different techniques to quantify the temporal response of the system. These techniques are generally applicable to arbitrary cavity configurations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.N. Oraevskii: Radio Elektroniikkalab. Tek. Korkeakoulu (Kertomus) 4, 718 (1959)

    Google Scholar 

  2. A.N. Oraevskii, A.V. Uspenskii: In Proc. Lebedev Inst., Vol. 31, ed. by D.V. Skobel’tsyn (Consultants Bureau, New York 1968) p. 87

    Google Scholar 

  3. N.G. Basov, A.Z. Grazyuk, I.G. Zubarev, L.V. Tevelev: ibid, p. 67

    Google Scholar 

  4. J.P. Gordon: Proc. IRE 50, 1898 (1962)

    Article  Google Scholar 

  5. A.S. Agabekjan, A.Z. Grazyuk, I.G. Zubarev, A.N. Oraevskii, V.I. Svergun: Radio Elektroniikkalab. Tek. Korkeakoulu (Kertomus) 9, 2156 (1964)

    Google Scholar 

  6. H.L. Stover, W.H. Steier: Appl. Phys. Lett. 8, 91 (1966)

    Article  ADS  Google Scholar 

  7. R.W. Dunn, S.T. Hendow, W.W. Chow, J. Small: Opt. Lett. 8, 319 (1983)

    Article  ADS  Google Scholar 

  8. W. Annovazzi, S. Donati: IEEE J. QE-16, 859 (1980)

    Google Scholar 

  9. L.E. Erickson, A. Szabo: Appl. Phys. Lett. 18, 433 (1981)

    Article  ADS  Google Scholar 

  10. P. Burlamacchi, R. Salimbeni: Opt. Commun. 17, 6 (1976)

    Article  ADS  Google Scholar 

  11. A. Girard: Opt. Commun. 11, 346 (1974)

    Article  ADS  Google Scholar 

  12. J.L. Lachambre, P. Lavigne, G. Otis, M. Noel: IEEE J. QE-12, 756 (1976)

    Article  Google Scholar 

  13. C.J. Buczek, R.J. Freiberg: IEEE J. QE-8, 643 (1972)

    Google Scholar 

  14. R. Lang: IEEE J. QE-18, 979 (1982) and references therein

    Google Scholar 

  15. L.A. Lugiato: “Theory of Optical Bistability”, in Progress in Optics, 21, 71 ed. by E. Wolf (North-Holland, Amsterdam 1984)

    Google Scholar 

  16. L.A. Orozco, A.T. Rosenberger, H.J. Kimble: Phys. Rev. Lett. 53, 2547 (1984)

    Article  ADS  Google Scholar 

  17. M.B. Spencer, W.E. Lamb, Jr.: Phys. Rev. A5, 884 (1972)

    Article  ADS  Google Scholar 

  18. See, for example, U. Ganiel, A. Hardy, D. Treves: IEEE J. QE-12, 704 (1976)

    Article  Google Scholar 

  19. R. Flamant, G. Megie: IEEE J. QE-16, 653 (1980)

    Article  Google Scholar 

  20. S. Blit, U. Ganiel, D. Treves: Appl. Phys. 12, 69 (1977)

    Article  ADS  Google Scholar 

  21. Y.K. Park, G. Giuliani, R.L. Byer: Opt. Lett. 5, 96 (1980)

    Article  ADS  Google Scholar 

  22. L.A. Lugiato: Lett. Nuovo Cimento 23, 609 (1978) and references therein

    Article  ADS  Google Scholar 

  23. T. Yamada, R. Graham: Phys. Lett. 53A, 77 (1975)

    Google Scholar 

  24. M.J. Scholz, T. Yamada, H. Brand, R. Graham: Phys. Lett. 82A, 321 (1981)

    ADS  Google Scholar 

  25. L.A. Lugiato, L.M. Narducci, D.K. Bandy, C.A. Pennise: Opt. Commun. 46, 64 (1983)

    Article  ADS  Google Scholar 

  26. D.K. Bandy, L.M. Narducci, C.A. Pennise, L.A. Lugiato: In Coherence and Quantum Optics V, ed. by L. Mandel, E. Wolf (Plenum, New York 1984)p. 585

    Google Scholar 

  27. L.A. Lugiato, L.M. Narducci: ibid. p. 941

    Google Scholar 

  28. F.T. Arecchi, G. Lippi, G. Puccioni, J.R. Tredicce: In Coherence and Quantum Optics V, ed. by L. Mandel, E. Wolf (Plenum, New York 1984) p. 1227

    Google Scholar 

  29. K. Otsuka, H. Iwamura: Phys. Rev. A28, 3153 (1983)

    Article  ADS  Google Scholar 

  30. D.K. Bandy, L.M. Narducci, L.A. Lugiato: J. Opt. Soc. Am. B2, 148 (1985)

    Article  ADS  Google Scholar 

  31. K. Otsuka: ibid. p. 168

    Google Scholar 

  32. J.R. Tredicce, F.T. Arecchi, G.L. Lippi, G.P. Puccioni: ibid. p. 173

    Google Scholar 

  33. E. Brun, B. Derighetti, D. Meier, R. Holzner, M. Ravani: J. Opt. Soc. Am. B2, 156 (1985) and references therein;

    Article  ADS  Google Scholar 

  34. J.L. Boulnois, G.P. Puccioni, F.T. Arecchi, J.R. Tredicce: private communication

    Google Scholar 

  35. N.B. Abraham, L.A. Lugiato, L.M. Narducci: J. Opt. Soc. Am. B2 (1985)

    Google Scholar 

  36. N.B. Abraham, P. Mandel, L.M. Narducci: “Dynamical Instabilities and Pulsations in Lasers”, in Progress in Optics, ed. by E. Wolf (North Holland, Amsterdam) to be published

    Google Scholar 

  37. H. Haken: Light, Vol. 2 (North Holland, Amsterdam 1985) p. 208

    Google Scholar 

  38. R.W. Boyd, M.G. Raymer, L.M. Narducci: Optical Instabilities, (Cambridge U. Press, London 1986)

    Google Scholar 

  39. Earlier stability studies for optically bistable systems have been carried out for parameter values that lied outside the MFL. See, for example, R. Bonifacio, L.A. Lugiato: Lett. Nuovo Cimento 21, 510 (1978);

    Google Scholar 

  40. K. Ikeda: Opt. Commun. 30, 257 (1979);

    Article  ADS  Google Scholar 

  41. L.A. Lugiato, M.L. Asquini, L.M. Narducci: Opt. Commun. 45, 450 (1982)

    Article  ADS  Google Scholar 

  42. The results of these studies can be applied to the case of a LIS by a simple change in sign of the pump parameter

    Google Scholar 

  43. L.M. Narducci, J.R. Tredicce, L.A. Lugiato, N.B. Abraham, D.K. Bandy: Phys. Rev. A32, 1588 (1985)

    Article  ADS  Google Scholar 

  44. L.A. Lugiato, R.J. Horowicz, G. Strini, L.M. Narducci: Phys. Rev. A30, 1366 (1984)

    Article  ADS  Google Scholar 

  45. In the case of a FRL, of course, the injected field is zero and the reference frequency ωO is replaced by the operating frequency ωL of the laser, whose value is to be calculated from the state equations

    Google Scholar 

  46. V. Benza, L.A. Lugiato: Z. Phys. B35, 383 (1979)

    Article  ADS  Google Scholar 

  47. L.A. Lugiato, P. Mandel, L.M. Narducci: Phys. Rev. A29, 1438 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  48. The degree of agreement or disagreement between the exact and the approximate imaginary parts of the linearized eigenvalues is roughly the same as with the real parts. For this reason, and to save space, we have omitted plots of the imaginary parts of the eigenvalues

    Google Scholar 

  49. For a given value of Y, we use as initial conditions the final values of the variables corresponding to the preceeding run. In this way, a given trajectory is never far removed from its asymptotic configuration except when a given basin of attraction loses stability

    Google Scholar 

  50. Y. Gu, D.K. Bandy, J.M. Yuan, L.M. Narducci: Phys. Rev. A31, 354 (1985)

    Article  ADS  Google Scholar 

  51. An extensive discussion of Lyapunov exponents can be found in G. Benettin, L. Galgani, A. Giorgilli, J. Strelcyn: Phys. Rev. A14, 2338 (1976); Meccanica 15, 9 (1980);

    Article  ADS  Google Scholar 

  52. I. Shimada, T. Nagashima: Prog. Theor. Phys. 61, 1605 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  53. Our own codes were developed on a PDP 11/23 minicomputer and executed on a PRIME 850 mainframe at the cost of several weaks of undivided attention by Professor Y. Gu; see [Ref. 4.32]

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bandy, D.K., Lugiato, L.A., Narducci, L.M. (1987). Single- and Multi-Mode Operation of a Laser with an Injected Signal. In: Arecchi, F.T., Harrison, R.G. (eds) Instabilities and Chaos in Quantum Optics. Springer Series in Synergetics, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71708-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71708-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71710-9

  • Online ISBN: 978-3-642-71708-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics