Advertisement

Single- and Multi-Mode Operation of a Laser with an Injected Signal

  • D. K. Bandy
  • L. A. Lugiato
  • L. M. Narducci
Part of the Springer Series in Synergetics book series (SSSYN, volume 34)

Abstract

This chapter contains several new results on the steady-state and linear stability properties of a laser with an injected signal, and a brief review of selected time- dependent studies. The steady-state analysis assumes a plane-wave profile for the laser field and for the incident signal, but is more general than previous models because it applies to a ring-cavity resonator whose mirrors have an arbitrary reflectivity, and to active media with an arbitrary small-signal gain per pass. The results include a survey of the dependence of the output on the input field for a number of typical operating conditions, and a study of the longitudinal variations of the field modulus inside the cavity. The linear stability analysis generalizes earlier investigations to include the case of a multimode ring cavity in the mean-field limit, a restriction that appears unavoidable at the present time. Off-resonant modes display wide domains of instability and suggest that earlier single-mode dynamical studies should be revisited. Our survey of the time-dependent output oscillations is limited to currently published single-mode operation results because work is currently in progress on multi-mode extensions. However, this survey does include discussion of several different techniques to quantify the temporal response of the system. These techniques are generally applicable to arbitrary cavity configurations.

Keywords

Lyapunov Exponent Hopf Bifurcation Resonant Mode Lower Branch Cavity Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 4.1
    A.N. Oraevskii: Radio Elektroniikkalab. Tek. Korkeakoulu (Kertomus) 4, 718 (1959)Google Scholar
  2. 4.2
    A.N. Oraevskii, A.V. Uspenskii: In Proc. Lebedev Inst., Vol. 31, ed. by D.V. Skobel’tsyn (Consultants Bureau, New York 1968) p. 87Google Scholar
  3. N.G. Basov, A.Z. Grazyuk, I.G. Zubarev, L.V. Tevelev: ibid, p. 67Google Scholar
  4. 4.3
    J.P. Gordon: Proc. IRE 50, 1898 (1962)CrossRefGoogle Scholar
  5. A.S. Agabekjan, A.Z. Grazyuk, I.G. Zubarev, A.N. Oraevskii, V.I. Svergun: Radio Elektroniikkalab. Tek. Korkeakoulu (Kertomus) 9, 2156 (1964)Google Scholar
  6. 4.4
    H.L. Stover, W.H. Steier: Appl. Phys. Lett. 8, 91 (1966)ADSCrossRefGoogle Scholar
  7. R.W. Dunn, S.T. Hendow, W.W. Chow, J. Small: Opt. Lett. 8, 319 (1983)ADSCrossRefGoogle Scholar
  8. W. Annovazzi, S. Donati: IEEE J. QE-16, 859 (1980)Google Scholar
  9. 4.5
    L.E. Erickson, A. Szabo: Appl. Phys. Lett. 18, 433 (1981)ADSCrossRefGoogle Scholar
  10. P. Burlamacchi, R. Salimbeni: Opt. Commun. 17, 6 (1976)ADSCrossRefGoogle Scholar
  11. 4.6
    A. Girard: Opt. Commun. 11, 346 (1974)ADSCrossRefGoogle Scholar
  12. J.L. Lachambre, P. Lavigne, G. Otis, M. Noel: IEEE J. QE-12, 756 (1976)CrossRefGoogle Scholar
  13. C.J. Buczek, R.J. Freiberg: IEEE J. QE-8, 643 (1972)Google Scholar
  14. 4.7
    R. Lang: IEEE J. QE-18, 979 (1982) and references thereinGoogle Scholar
  15. 4.8
    L.A. Lugiato: “Theory of Optical Bistability”, in Progress in Optics, 21, 71 ed. by E. Wolf (North-Holland, Amsterdam 1984)Google Scholar
  16. L.A. Orozco, A.T. Rosenberger, H.J. Kimble: Phys. Rev. Lett. 53, 2547 (1984)ADSCrossRefGoogle Scholar
  17. 4.9
    M.B. Spencer, W.E. Lamb, Jr.: Phys. Rev. A5, 884 (1972)ADSCrossRefGoogle Scholar
  18. 4.10
    See, for example, U. Ganiel, A. Hardy, D. Treves: IEEE J. QE-12, 704 (1976)CrossRefGoogle Scholar
  19. R. Flamant, G. Megie: IEEE J. QE-16, 653 (1980)CrossRefGoogle Scholar
  20. 4.11
    S. Blit, U. Ganiel, D. Treves: Appl. Phys. 12, 69 (1977)ADSCrossRefGoogle Scholar
  21. Y.K. Park, G. Giuliani, R.L. Byer: Opt. Lett. 5, 96 (1980)ADSCrossRefGoogle Scholar
  22. 4.12
    L.A. Lugiato: Lett. Nuovo Cimento 23, 609 (1978) and references thereinADSCrossRefGoogle Scholar
  23. 4.13
    T. Yamada, R. Graham: Phys. Lett. 53A, 77 (1975)Google Scholar
  24. 4.14
    M.J. Scholz, T. Yamada, H. Brand, R. Graham: Phys. Lett. 82A, 321 (1981)ADSGoogle Scholar
  25. 4.15
    L.A. Lugiato, L.M. Narducci, D.K. Bandy, C.A. Pennise: Opt. Commun. 46, 64 (1983)ADSCrossRefGoogle Scholar
  26. D.K. Bandy, L.M. Narducci, C.A. Pennise, L.A. Lugiato: In Coherence and Quantum Optics V, ed. by L. Mandel, E. Wolf (Plenum, New York 1984)p. 585Google Scholar
  27. L.A. Lugiato, L.M. Narducci: ibid. p. 941Google Scholar
  28. 4.16
    F.T. Arecchi, G. Lippi, G. Puccioni, J.R. Tredicce: In Coherence and Quantum Optics V, ed. by L. Mandel, E. Wolf (Plenum, New York 1984) p. 1227Google Scholar
  29. 4.17
    K. Otsuka, H. Iwamura: Phys. Rev. A28, 3153 (1983)ADSCrossRefGoogle Scholar
  30. 4.18
    D.K. Bandy, L.M. Narducci, L.A. Lugiato: J. Opt. Soc. Am. B2, 148 (1985)ADSCrossRefGoogle Scholar
  31. K. Otsuka: ibid. p. 168Google Scholar
  32. J.R. Tredicce, F.T. Arecchi, G.L. Lippi, G.P. Puccioni: ibid. p. 173Google Scholar
  33. 4.19
    E. Brun, B. Derighetti, D. Meier, R. Holzner, M. Ravani: J. Opt. Soc. Am. B2, 156 (1985) and references therein;ADSCrossRefGoogle Scholar
  34. J.L. Boulnois, G.P. Puccioni, F.T. Arecchi, J.R. Tredicce: private communicationGoogle Scholar
  35. 4.20
    N.B. Abraham, L.A. Lugiato, L.M. Narducci: J. Opt. Soc. Am. B2 (1985)Google Scholar
  36. 4.21
    N.B. Abraham, P. Mandel, L.M. Narducci: “Dynamical Instabilities and Pulsations in Lasers”, in Progress in Optics, ed. by E. Wolf (North Holland, Amsterdam) to be publishedGoogle Scholar
  37. 4.22
    H. Haken: Light, Vol. 2 (North Holland, Amsterdam 1985) p. 208Google Scholar
  38. 4.23
    R.W. Boyd, M.G. Raymer, L.M. Narducci: Optical Instabilities, (Cambridge U. Press, London 1986)Google Scholar
  39. 4.24
    Earlier stability studies for optically bistable systems have been carried out for parameter values that lied outside the MFL. See, for example, R. Bonifacio, L.A. Lugiato: Lett. Nuovo Cimento 21, 510 (1978);Google Scholar
  40. 4.24
    K. Ikeda: Opt. Commun. 30, 257 (1979);ADSCrossRefGoogle Scholar
  41. 4.24
    L.A. Lugiato, M.L. Asquini, L.M. Narducci: Opt. Commun. 45, 450 (1982)ADSCrossRefGoogle Scholar
  42. 4.24
    The results of these studies can be applied to the case of a LIS by a simple change in sign of the pump parameterGoogle Scholar
  43. 4.25
    L.M. Narducci, J.R. Tredicce, L.A. Lugiato, N.B. Abraham, D.K. Bandy: Phys. Rev. A32, 1588 (1985)ADSCrossRefGoogle Scholar
  44. 4.26
    L.A. Lugiato, R.J. Horowicz, G. Strini, L.M. Narducci: Phys. Rev. A30, 1366 (1984)ADSCrossRefGoogle Scholar
  45. 4.27
    In the case of a FRL, of course, the injected field is zero and the reference frequency ωO is replaced by the operating frequency ωL of the laser, whose value is to be calculated from the state equationsGoogle Scholar
  46. 4.28
    V. Benza, L.A. Lugiato: Z. Phys. B35, 383 (1979)ADSCrossRefGoogle Scholar
  47. 4.29
    L.A. Lugiato, P. Mandel, L.M. Narducci: Phys. Rev. A29, 1438 (1984)MathSciNetADSCrossRefGoogle Scholar
  48. 4.30
    The degree of agreement or disagreement between the exact and the approximate imaginary parts of the linearized eigenvalues is roughly the same as with the real parts. For this reason, and to save space, we have omitted plots of the imaginary parts of the eigenvaluesGoogle Scholar
  49. 4.31
    For a given value of Y, we use as initial conditions the final values of the variables corresponding to the preceeding run. In this way, a given trajectory is never far removed from its asymptotic configuration except when a given basin of attraction loses stabilityGoogle Scholar
  50. 4.32
    Y. Gu, D.K. Bandy, J.M. Yuan, L.M. Narducci: Phys. Rev. A31, 354 (1985)ADSCrossRefGoogle Scholar
  51. 4.33
    An extensive discussion of Lyapunov exponents can be found in G. Benettin, L. Galgani, A. Giorgilli, J. Strelcyn: Phys. Rev. A14, 2338 (1976); Meccanica 15, 9 (1980);ADSCrossRefGoogle Scholar
  52. 4.33
    I. Shimada, T. Nagashima: Prog. Theor. Phys. 61, 1605 (1974)MathSciNetADSCrossRefGoogle Scholar
  53. 4.34
    Our own codes were developed on a PDP 11/23 minicomputer and executed on a PRIME 850 mainframe at the cost of several weaks of undivided attention by Professor Y. Gu; see [Ref. 4.32]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • D. K. Bandy
  • L. A. Lugiato
  • L. M. Narducci

There are no affiliations available

Personalised recommendations