The Convection Current for the 0+ →1+ Excitations in the Even-Even f7/2 Shell Nuclei

  • T. Oda
  • K. Muto


The experimental puzzle — a broad bump centered at 10.15 MeV in 51V is observed in the proton inelastic scattering[1], while there are no strong Ml excitations in the (e,e’) spectra[2] — might suggest the destructive interference of spin and orbital contributions in this energy range, because intermediate energy proton scattering at small angles excites magnetic dipole states only through the spin part of the nucleon-nucleon interaction[3,4], whereas both spin and orbital parts of the electromagnetic interaction may contribute to inelastic electron scattering. In the large scale shell model calculation[5], however, appreciable orbital contribution for T=TZ states appears below 8.5 MeV, and no appreciable orbital contribution is seen in the excitation energy range where a strong Ml excitation is observed in the (p,p’) reaction. MUTO and HORIE have shown that the strong fragmentation and continuous distribution of the calculated strength in the energy range between 8 and 12 MeV in 5lV could cause Ml amplitudes to be hardly detected by the (e,e’) measurement, consistent with such an experimental condition that the peak-background ratio of (e,e’) spectra is much smaller than that of (p,p’)[6].


Current Contribution Shell Model Calculation Inelastic Electron Orbital Current Order Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Djalali et al: Nucl. Phys. A388, 1 (1982)ADSGoogle Scholar
  2. 2.
    D. Bender et al.: Nucl. Phys. A398, 408 (1983)ADSGoogle Scholar
  3. 3.
    G. M. Crawley et al.: Phys. Rev. C26, 87 (1982)ADSGoogle Scholar
  4. 4.
    C. Djalali: Proc. Int. Symp. on Highly Excited States, J. Phys. (Paris) C4, 375 (1984)Google Scholar
  5. 5.
    K. Muto and H. Horie: Nucl. Phys. A440, 254 (1985)ADSGoogle Scholar
  6. 6.
    The same as [4].Google Scholar
  7. 7.
    N. Lo Iudice and F. Palumbo: Phys. Rev. Lett. 41, 1532 (1978)ADSCrossRefGoogle Scholar
  8. 7a.
    T. Suzuki and D. J. Rowe: Nucl. Phys. A289, 461 (1977)ADSGoogle Scholar
  9. 7b.
    A. E. L. Dieperink: Prog. Part. Nucl. Phys. 9, 121 (1983)ADSCrossRefGoogle Scholar
  10. 7c.
    E. Lipparini and S. Stringari: Phys. Lett. 130B, 139 (1983)ADSGoogle Scholar
  11. 7d.
    H. Kurasawa and T. Suzuki: Phys. Lett. 144B, 151 (1984)ADSGoogle Scholar
  12. 7e.
    I. Hamamoto and S. Aberg: Phys. Lett. 145B, 163 (1984)ADSGoogle Scholar
  13. 7f.
    O. Scholten et al.: Nucl. Phys. A438, 41 (1985)ADSGoogle Scholar
  14. 7g.
    A. van Egmond et al.: Preprint Amsterdam UniversityGoogle Scholar
  15. 8.
    C. Djalali et al.: Phys. Lett. 164B, 269 (1985)ADSGoogle Scholar
  16. 9.
    D. Bohle et al.: Phys. Lett. 137B, 27 (1984)ADSGoogle Scholar
  17. 9a.
    D. Bohle et al.: Phys. Lett. 148B, 260 (1984)ADSGoogle Scholar
  18. 10.
    U. E. P. Berg et al.: Phys. Lett. 149B, 59 (1984)ADSGoogle Scholar
  19. 11.
    L. Zamick: Phys. Rev. C31, 1955 (1985)ADSGoogle Scholar
  20. 12.
    L. Zamick: Phys. Lett. 167B, 1 (1986)ADSGoogle Scholar
  21. 13.
    A. Yokoyama and H. Horie: Phys. Rev. C31, 1012 (1985)ADSGoogle Scholar
  22. 14.
    H. Noya, A. Arima and H. Horie: Prog. Theor. Phys. Suppl. No. 8, 33 (1958)ADSCrossRefGoogle Scholar
  23. 15.
    A. Arima: Proc. Int. Conf. on Nuclear Moments and Nuclear Structure (Osaka, 1972), edited by H. Horie and K. Sugimoto (Phys. Soc. Japan), p.205, 1973Google Scholar
  24. 16.
    J. A. Evans, J. P. Elliott and S. Szpikowski: Nucl. Phys. A435, 317 (1985)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • T. Oda
    • 1
  • K. Muto
    • 1
  1. 1.Department of PhysicsTokyo Institute of TechnologyMeguro-ku, TokyoJapan

Personalised recommendations