Photon Decay of Giant Resonances

  • F. E. Bertrand
  • J. R. Beene
  • M. L. Halbert
Conference paper


We have determined the total gamma-decay probability, the ground-state gamma branching ratio, and the branching ratios to a number of low-lying states as a function of excitation energy in 208Pb to ~ 15 MeV. The total yield of ground-state E2 gamma radiation in 208Pb can only be understood if decay of compound states is considered. Other observations in 208Pb include the absence of a significant branch from the giant quadrupole resonance (GQR) to the low-lying collective states at 2.6 MeV and 4.08 MeV, and a strong branch to a 3- state at 4.97 MeV.


208Pb Reso 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Fred E. Bertrand, Annual Review of Nuclear Science 26, 457 (1976).ADSCrossRefGoogle Scholar
  2. [1a]
    “Giant Multipole Resonances,” Proceedings of the Giant Multipole Resonance Topical Conference, Oak Ridge, Tennessee, October 1979, ed. Fred E. Bertrand (Harwood Academic Publishers, New York, 1980).Google Scholar
  3. [1b]
    Fred E. Bertrand, Nucl. Phys. A354, 129c (1981).ADSGoogle Scholar
  4. [2]
    (a) T. P. Sjoreen, F. E. Bertrand, R. L. Auble, E. E. Gross, D. J. Horen, D. Shapira and B. Wright, Phys. Rev. C 29, 1370 (1984).ADSCrossRefGoogle Scholar
  5. [2] (b)
    “Excitation of the High Energy Nuclear Continuum in 208Pb by 22 MeV/Nucleon 17O and 32S,” F. E. Bertrand et al., submitted for publication in Phys. Rev. C.Google Scholar
  6. [3]
    G. F. Bertsch, P. F. Bortignon, and R. A. Broglia, Rev. Mod. Phys. 55, 287 (1983).ADSCrossRefGoogle Scholar
  7. [4]
    P. F. Bortignon and R. A. Broglia, Nucl. Phys. A371, 405 (1981).ADSGoogle Scholar
  8. [5]
    G. R. Satchler, Phys. Rep. 14, 99 (1974).ADSCrossRefGoogle Scholar
  9. [6]
    K. Goeke and J. Speth, Annu. Rev. Nucl. Sci. 32, 65 (1982).ADSCrossRefGoogle Scholar
  10. [7]
    G. J. Wagner SPIOBA in Giant Multi pole Resonances, ed. F. E. Bertrand (Harwood Academic, New York, 1980), pp. 251–74.Google Scholar
  11. [8]
    L. S. Cardman, Nucl. Phys. A354, 173c (1981).Google Scholar
  12. [9]
    F. E. Bertrand et al., Physical Review C, to be published.Google Scholar
  13. [10]
    M. Jääskeläinen et al., Nucl. Instrum. Methods 204, 385 (1983).CrossRefGoogle Scholar
  14. [11]
    A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. I (Benjamin, Reading, Mass., 1969).Google Scholar
  15. [12]
    A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. II (Benjamin, Reading, Mass., 1975).Google Scholar
  16. [13]
    J. R. Beene et al., Phys. Lett. 164B, 19 (1985).ADSGoogle Scholar
  17. [14]
    P. A. Moldauer, Phys. Rev. C 11, 426 (1974).ADSCrossRefGoogle Scholar
  18. [15]
    J. E. Lynn, Theory of Neutron Resonance Cross Sections (Oxford University Press, Oxford, 1968).Google Scholar
  19. [16]
    P. Axel et al., Phys. Rev. C 2, 689 (1970).ADSCrossRefGoogle Scholar
  20. [17]
    S. G. Mughabghab, M. Divadeenam, and N. E. Holden, Neutron Cross Sections (Academic Press, New York, 1981).Google Scholar
  21. [18]
    D. J. Horen, J. A. Harvey, and N. W. Hill, Phys. Rev. C 18, 722 (1978).ADSCrossRefGoogle Scholar
  22. [19]
    P. F. Bortignon, R. A. Broglia, and G. F. Bertsch, Phys. Lett. 148B, 20 (1984).ADSGoogle Scholar
  23. [20]
    J. Speth et al., Phys. Rev. C 31, 2310 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • F. E. Bertrand
    • 1
  • J. R. Beene
    • 1
  • M. L. Halbert
    • 1
  1. 1.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations