Advertisement

Photon Decay of Giant Resonances

  • F. E. Bertrand
  • J. R. Beene
  • M. L. Halbert
Conference paper

Abstract

We have determined the total gamma-decay probability, the ground-state gamma branching ratio, and the branching ratios to a number of low-lying states as a function of excitation energy in 208Pb to ~ 15 MeV. The total yield of ground-state E2 gamma radiation in 208Pb can only be understood if decay of compound states is considered. Other observations in 208Pb include the absence of a significant branch from the giant quadrupole resonance (GQR) to the low-lying collective states at 2.6 MeV and 4.08 MeV, and a strong branch to a 3- state at 4.97 MeV.

Keywords

Inelastic Scattering Neutron Emission Giant Resonance Compound State Neutron Separation Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Fred E. Bertrand, Annual Review of Nuclear Science 26, 457 (1976).ADSCrossRefGoogle Scholar
  2. [1a]
    “Giant Multipole Resonances,” Proceedings of the Giant Multipole Resonance Topical Conference, Oak Ridge, Tennessee, October 1979, ed. Fred E. Bertrand (Harwood Academic Publishers, New York, 1980).Google Scholar
  3. [1b]
    Fred E. Bertrand, Nucl. Phys. A354, 129c (1981).ADSGoogle Scholar
  4. [2]
    (a) T. P. Sjoreen, F. E. Bertrand, R. L. Auble, E. E. Gross, D. J. Horen, D. Shapira and B. Wright, Phys. Rev. C 29, 1370 (1984).ADSCrossRefGoogle Scholar
  5. [2] (b)
    “Excitation of the High Energy Nuclear Continuum in 208Pb by 22 MeV/Nucleon 17O and 32S,” F. E. Bertrand et al., submitted for publication in Phys. Rev. C.Google Scholar
  6. [3]
    G. F. Bertsch, P. F. Bortignon, and R. A. Broglia, Rev. Mod. Phys. 55, 287 (1983).ADSCrossRefGoogle Scholar
  7. [4]
    P. F. Bortignon and R. A. Broglia, Nucl. Phys. A371, 405 (1981).ADSGoogle Scholar
  8. [5]
    G. R. Satchler, Phys. Rep. 14, 99 (1974).ADSCrossRefGoogle Scholar
  9. [6]
    K. Goeke and J. Speth, Annu. Rev. Nucl. Sci. 32, 65 (1982).ADSCrossRefGoogle Scholar
  10. [7]
    G. J. Wagner SPIOBA in Giant Multi pole Resonances, ed. F. E. Bertrand (Harwood Academic, New York, 1980), pp. 251–74.Google Scholar
  11. [8]
    L. S. Cardman, Nucl. Phys. A354, 173c (1981).Google Scholar
  12. [9]
    F. E. Bertrand et al., Physical Review C, to be published.Google Scholar
  13. [10]
    M. Jääskeläinen et al., Nucl. Instrum. Methods 204, 385 (1983).CrossRefGoogle Scholar
  14. [11]
    A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. I (Benjamin, Reading, Mass., 1969).Google Scholar
  15. [12]
    A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. II (Benjamin, Reading, Mass., 1975).Google Scholar
  16. [13]
    J. R. Beene et al., Phys. Lett. 164B, 19 (1985).ADSGoogle Scholar
  17. [14]
    P. A. Moldauer, Phys. Rev. C 11, 426 (1974).ADSCrossRefGoogle Scholar
  18. [15]
    J. E. Lynn, Theory of Neutron Resonance Cross Sections (Oxford University Press, Oxford, 1968).Google Scholar
  19. [16]
    P. Axel et al., Phys. Rev. C 2, 689 (1970).ADSCrossRefGoogle Scholar
  20. [17]
    S. G. Mughabghab, M. Divadeenam, and N. E. Holden, Neutron Cross Sections (Academic Press, New York, 1981).Google Scholar
  21. [18]
    D. J. Horen, J. A. Harvey, and N. W. Hill, Phys. Rev. C 18, 722 (1978).ADSCrossRefGoogle Scholar
  22. [19]
    P. F. Bortignon, R. A. Broglia, and G. F. Bertsch, Phys. Lett. 148B, 20 (1984).ADSGoogle Scholar
  23. [20]
    J. Speth et al., Phys. Rev. C 31, 2310 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • F. E. Bertrand
    • 1
  • J. R. Beene
    • 1
  • M. L. Halbert
    • 1
  1. 1.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations