Advertisement

Nuclear Rotation in the N≅Z≅36 Region

  • K. P. Lieb
Conference paper

Abstract

Heavy ion fusion reactions have provided evidence for pronounced variations of the nuclear moment of inertia as function of the rotational frequency ℏω and nucleon number A. These variations have been linked to the alignment of particles in high j orbits, reduction of pairing correlations, shape coexistence or other changes of the collective and/or single-particle structure. For several reasons, the N ≅ Z = 34–40 region offers an excellent testing ground for such effects: these nuclei are among the most deformed of the periodic table with deformation parameters β2 = 0.3–0.4; they often are γ-unstable, triaxial or shape coexistent; particle alignment involving the g9/2 proton and/or neutron orbit occur at ℏω ≅ 0.5 MeV, e.g. in a spin region easily accessible to standard γ-ray spectroscopy on discrete transitions.

Keywords

High Spin State Yrast Band Nucleon Number Ground Band Shape Coexistence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.B. Piercey, et al.: Phys. Rev. Lett. 47, 1524 (1981)ADSCrossRefGoogle Scholar
  2. 2.
    B. Wörmann, et al.: Nucl. Phys. A431, 170 (1984)ADSGoogle Scholar
  3. 3.
    F.J. Bergmeister, W. Gelletly, K.P. Lieb, C.J. Lister, L. Lühmann, R. Moskrop, H.G. Price, B.J. Varley and B. Wörmann, to be publ.Google Scholar
  4. 4.
    L. Lühmann, et al.: Phys. Rev. C31, 828 (1985)ADSGoogle Scholar
  5. 5.
    H.P. Hellmeister, et al.: Nucl. Phys. A332, 241 (1979)ADSGoogle Scholar
  6. 6.
    W. Nazarewicz, et al.: Nucl. Phys. A435, 397 (1985)ADSGoogle Scholar
  7. 7.
    L. Lühmann, K.P. Lieb, C.J. Lister, J.W. Olness, H.G. Price, and B.J. Varley: Europhys. Lett. 1, 623 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    L. Lühmann, doctoral thesis Göttingen (1985) unpubl.Google Scholar
  9. 9.
    C. Thibault, et al.: Phys. Rev. C27, 2720 (1981)ADSGoogle Scholar
  10. 10.
    W. Nazarewicz: private communicationGoogle Scholar
  11. 11.
    B. Wörmann, et al.: Z. Phys. A332, 171 (1985)Google Scholar
  12. 12.
    J. Panqueva, et al.: Nucl. Phys. A376, 367 (1982)ADSGoogle Scholar
  13. 13.
    J. Panqueva, et al.: Nucl. Phys. A389, 424 (1982)ADSGoogle Scholar
  14. 14.
    H. Toki and A. Faessler: Phys. Lett. 63B, 121 (1976)ADSGoogle Scholar
  15. 14a.
    A. Petrovici and A. Faessler, Nucl. Phys. A395, 44 (1983)ADSGoogle Scholar
  16. 15.
    D.P. Ahalpara, K.H. Bhatt and R. Sahu: J. Phys. G10, 735 (1985)ADSGoogle Scholar
  17. 16.
    J. Heese, K.P. Lieb, L. Lühmann, F. Raether, B. Wörmann, D. Alber, H. Grawe, J. Eberth and T. Mylaeus: Z. Phys. in pressGoogle Scholar
  18. 17.
    K.P. Lieb and J.J. Kolata, Phys. Rev. C15, 939 (1977)ADSGoogle Scholar
  19. 17a.
    H.P. Hellmeister, et al: Phys. Rev. C17, 2113 (1978)ADSGoogle Scholar
  20. 17b.
    J.H. Hamilton, et al.: Phys. Rev. Lett. 36, 340 (76)Google Scholar
  21. 18.
    J.D. Garrett, G.B. Hagemann and B. Herskind: Ann. Rev. Nucl. Part. Sci. in pressGoogle Scholar
  22. 19.
    I. Hamamoto and B.R. Mottelson: Phys. Lett. 132B, 7 (1982)ADSGoogle Scholar
  23. 19a.
    I. Hamamoto and B.R. Mottelson: Phys. Lett. 167B, 370 (1986)ADSGoogle Scholar
  24. 20.
    L. Funke, et al.: Phys. Lett. 120B, 301 (1983)ADSGoogle Scholar
  25. 20a.
    F. Dönau: NBI-ZFK preprint 85–36Google Scholar
  26. 21.
    R. Bengtsson and W. Nazarewicz: XIX Winter School on Physics, Zakopane (1984)Google Scholar
  27. 22.
    H.G. Price, et al.: Phys. Rev. Lett. 51, 1842 (1983)ADSCrossRefGoogle Scholar
  28. 23.
    R.F. Davie, et al.: to be publ.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • K. P. Lieb
    • 1
  1. 1.II. Physikalisches InstitutUniversität GöttingenGöttingenF. R. Germany

Personalised recommendations