Advertisement

Hierarchy and Mass Spectrum from Minimal Supergravity

  • N. Dragon
Conference paper

Abstract

The successful explanation of the strong, weak and electromagnetic forces as gauge interactions of the group SU(3) x SU(2) x U(1) has encouraged attempts to unify all these interactions including, if possible, gravity. This unification, however, can occur only at energy scales which are enormously above the weak scale MW — the scale set by the mass of the W- and Z-bosons 223e102GeV. Typical models wnich unify the gauge interactions deal with mass scales of about 1015GeV. If gravity is included it introduces the Planck-scale into the game
$$ {M_{{pl}}} = 2.4 \cdot {10^{{18}}}GeV = {\left( {8\pi {G_N}} \right)^{{ - 1}}}\,\left( {c = \hbar = 1,\,{G_N} = Newton's\,cons\tan t} \right) $$
Therefore each unification model raises the question why such disparate mass scales occur. In terms of the standard SU(3) x SU(2) x U(1) model the unification scale is hierarchically large while in terms of scales set by the gauge unification or by gravity the weak scale is unnaturally small.

Keywords

Quantum Correction Chiral Multiplet Supersymmetric Model Weak Scale Gauge Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Haag, J. Łopuszanski and M. Sohnius, Nucl. Phys. B 88, 257 (1975)ADSCrossRefGoogle Scholar
  2. 2a.
    J. Wess and B. Zumino, Nucl. Phys. B 70, 39–50 (1974)MathSciNetADSCrossRefGoogle Scholar
  3. 2b.
    Phys. Lett. 49 B 52–54 (1974)ADSGoogle Scholar
  4. 3.
    J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton University Press (1983)MATHGoogle Scholar
  5. 4.
    N. Dragon, U. Ellwanger and M.G. Schmidt, Supersymmetry and Supergravity, Heidelberg preprint HD-THEP-86–3 to appear in “Progress in Particle and Nuclear Physics”Google Scholar
  6. 5.
    L. O’Raifeartaigh, Nucl. Phys. B 96, 331–352 (1975)MathSciNetADSCrossRefGoogle Scholar
  7. 6.
    E. Witten, Phys. Lett. 105 B, 267 (1981)MathSciNetADSGoogle Scholar
  8. 7.
    N. Dragon, M.G. Schmidt and U. Ellwanger, Phys. Lett. 145 B, 192–196 (1984)MathSciNetADSGoogle Scholar
  9. 8.
    N. Dragon, U. Ellwanger and M.G. Schmidt, Phys. Lett. 154 B, 373–380 (1985)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • N. Dragon
    • 1
  1. 1.Institut für Theoretische PhysikUniversität HannoverHannoverF. R. Germany

Personalised recommendations