Skip to main content

Study of Rare and Forbidden μ- and π-Decays

  • Conference paper
  • 230 Accesses

Abstract

The standard Glashow-Salam-Weinberg model [1–2] combines weak and electromagnetic interactions on the basis of a spontaneously broken SU(2)LxU(1) symmetry. The experimental verification [3–5] of the existence of its most noticeable prediction, the W and Z bosons led to profound trust in this model as the correct description of electroweak processes at “low energies” up to tens of GeV. The phenomenon of maximal parity violation, i.e. the V-A structure of weak interactions and the masslessness of neutrinos is built into the theory by assigning lefthanded fermions to SU(2) doublets and righthanded ones to singlets and requiring lepton number conservation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.L. Glashow, Nucl. Phys. 22(1961)579

    Article  Google Scholar 

  2. S. Weinberg, Phys. Rev. Lett. 19(1967)1264

    Article  ADS  Google Scholar 

  3. A. Salam, Proc. 8th Nobel Symp. Stockholm, Almquist and Wiksells (1968)p.367

    Google Scholar 

  4. G. Arnison et al. Phys. Lett. 122B(1983)103

    ADS  Google Scholar 

  5. M. Banner et al. Phys. Lett. 122B(1983)476

    ADS  Google Scholar 

  6. G. Arnison et al. Phys. 126B(1983)398

    Google Scholar 

  7. P. Langacker, Phys. Rep. 72C(1981)185

    Article  ADS  Google Scholar 

  8. H. Haber, G. Kane, Phys. Rep. 117(1985)75

    Article  ADS  Google Scholar 

  9. H.P. Nilles, Phys. Rep. C110(1984)1

    Article  ADS  Google Scholar 

  10. J.H. Schwarz, report CALT-68-1290 (1985) “Introduction to Superstrings” Lectures at Trieste Work Shop 1985.

    Google Scholar 

  11. R.K. Kaul, Rev. Mod. Phys. 55(1983)449

    Article  ADS  Google Scholar 

  12. E. Farhi, L. Susskind, Phys. Rep. C74(1981)278

    Google Scholar 

  13. S. Dimopoulos, J. Ellis, Nucl. Phys. B182(1981)505

    Article  ADS  Google Scholar 

  14. R.N. Cahn, H. Harari, Nucl. Phys. B176(1980)135

    Article  ADS  Google Scholar 

  15. G.L. Kane, R. Thun, Phys. Lett. 94B(1980)513

    ADS  Google Scholar 

  16. O. Shanker, Nucl. Phys. B185(1981)382 and

    Article  ADS  Google Scholar 

  17. O. Shanker, Nucl. Phys. B206(1982)253

    Article  ADS  Google Scholar 

  18. D.R.T. Jones et al., Nucl. Phys. B198(1982)45

    Article  ADS  Google Scholar 

  19. L. Lyons, Progr. Part. Nucl. Phys. V10(1983)227

    Article  ADS  Google Scholar 

  20. M. Gell-Mann et al. In Supergravity, eds. Nieuwenhuizen, P.V., and Freedman, D. Amsterdam. North Holland, 1979. p. 317

    Google Scholar 

  21. T. Yanagida, In Proc. Workshop on Unified Theory and Baryon Number in the Universe, eds. O. Sawada, A. Sugamoto, Tsukuba: KEK. 1979

    Google Scholar 

  22. R.N. Mohapatra, G. Senjanovic, Phys. Rev. D23(1981)165

    ADS  Google Scholar 

  23. P. Kalyniak, J.N. Ng, Phys. Rev. D24(1981)1874

    ADS  Google Scholar 

  24. J. Missimer et al. Nucl. Phys. B188(1981)29

    Article  ADS  Google Scholar 

  25. M. Doi et al. Progr. Theor. Phys. 71(1984)1440

    Article  ADS  Google Scholar 

  26. M.S. Dixit et al. Phys. Rev. D27(1983)2216

    ADS  Google Scholar 

  27. J. Maalampi et al. Nucl. Phys. B207(1982)233

    Article  ADS  Google Scholar 

  28. K. Mursula, F. Scheck, Nucl. Phys. B253(1985)189

    Article  ADS  Google Scholar 

  29. R.E. Shrock, Phys. Rev. D24(1981)1275

    ADS  Google Scholar 

  30. T.D. Lee, C.N. Yang, Phys. Rev. 98(1955)1501

    Article  ADS  Google Scholar 

  31. F. Boehm, P. Vogel, Ann. Rev. Nucl. Part. Sci 34(1984)125

    Article  ADS  Google Scholar 

  32. M. Fritschi et al. Phys. Letters 173B(1986)485

    ADS  Google Scholar 

  33. W.C. Haxton, G.J. Stephenson, Progr. Part. Nucl. Phys. 12(1984)409

    Article  ADS  Google Scholar 

  34. H. Blümer, Proc. Int. Conf. on High Energy Physics, Bari, Italy, July 18–24, 1985. Laterza Bari. p. 429

    Google Scholar 

  35. F. Vanucci, Proc. 18. Renc. de Moriond, La Plagne, March 13–19 1983. p. 63

    Google Scholar 

  36. J. Deutsch, see Reference 27. (lap)p. 438

    Google Scholar 

  37. H.K. Walter Nucl. Phys. A434(1985)409c

    ADS  Google Scholar 

  38. H.K. Walter “The Future of Medium- and High-Energy Physics in Switzerland”, Les Rasses, Switzerland, May 17–18, 1985, p. 87

    Google Scholar 

  39. V.W. Hughes, Kinoshita, T. Comm. Nucl. Part. Phys. 14(1985)341

    Google Scholar 

  40. W. Fetscher et al. Phys. Lett. 173B(1986)102

    ADS  Google Scholar 

  41. R. Engfer, H.K. Walter, Ann. Rev. of Nucl. and Part. Sc. Vol.36(1986)

    Google Scholar 

  42. N. Kraus, A. Kersch, Nucl. Phys. to be published and contribution to this conference

    Google Scholar 

  43. N. Kraus thesis University Zürich 1985

    Google Scholar 

  44. J. Carr et al. Phys. Rev. Lett. 51(1983)627

    Article  ADS  Google Scholar 

  45. J. Carr et al. Phys. Rev. Lett. 51(1983)1222.See also D.P. Stoker theses LBL-20324 1984. A.E. Jodidio thesis LBL. 1986

    Article  ADS  Google Scholar 

  46. W. Buchmüller, F. Scheck Phys. Lett. 145B(1984)421

    ADS  Google Scholar 

  47. J. Barber, R.E. Shrock Phys.Lett. 139(1984)427

    Article  Google Scholar 

  48. A.R. Clark et al. Phys. Rev. Lett 26(1971)1667

    Article  ADS  Google Scholar 

  49. A. Diamant-Berger et al. Phys. Lett. 62B(1976)485

    ADS  Google Scholar 

  50. R.D. Bolton et al. Draft paper LAMPF, Jan. 1986

    Google Scholar 

  51. R. Bolton et al. Phys. Rev. Lett. 53(1984)1415 and

    Article  ADS  Google Scholar 

  52. Ref. 32 p. 447

    Google Scholar 

  53. W. Berti et al. Nucl. Phys. B260(1985)1

    Article  ADS  Google Scholar 

  54. D.A. Bryman et al. Phys. Rev. Lett 55(1985)465

    Article  ADS  Google Scholar 

  55. D. Bryman, Workshop on Fundamental Muon Physics, LAMPF, Jan.20–22, 1986 and private communication.

    Google Scholar 

  56. G.M. Marshall et al. Phys. Rev. D25(1982)1174

    ADS  Google Scholar 

  57. R.C. Larsen et al. AGS exp. E780, Brookhaven (1983)

    Google Scholar 

  58. S.G. Wojcicki AGS exp. E791, Brookhaven (1984)

    Google Scholar 

  59. T. Inagaki et al. KEK Internal 85–1, Ibaraki (1985)

    Google Scholar 

  60. M. Zeller AGS exp. E77, Brookhaven (1982)

    Google Scholar 

  61. M.D. Cooper LAMPF exp. 969, LAMPF-Los Alamos (1985)

    Google Scholar 

  62. H.K. Walter et al. SIN letter of intent R-85–15.0, SIN-Villingen (1985)

    Google Scholar 

  63. A. Badertscher et al. SIN letter of intent R-85–07.0, SIN-Villingen (1985)

    Google Scholar 

  64. V.W. Hughes et al. LAMPF exp. 985, LAMPF-Los Alamos (1985)

    Google Scholar 

  65. K.P. Arnold et al. SIN exp. R-85–08.1., SIN-Villingen (1985)

    Google Scholar 

  66. W.H. Bertl et al., Nucl. Instr. Meth. 217(1983)367

    Article  Google Scholar 

  67. J. Ellis and D.V. Nanopoulos Phys.Lett. 110(1982)44

    Article  Google Scholar 

  68. H. Terazawa et al. Phys. Lett. 112B(1982)387

    ADS  Google Scholar 

  69. S.M. Bilenky, B. Pontecorvo, Phys. Rep. C41(1978)225

    Article  ADS  Google Scholar 

  70. S. Barshay, Phys. Lett. 58B(1975)86

    ADS  Google Scholar 

  71. M. Peskin, Proc. Int. Symp. “Lepton-Photon Interact. at High Energies”, Bonn 1981

    Google Scholar 

  72. R. Barbieri et al. Phys. Lett. 96B(1980)63 and TH-2850-CERN (1980)

    ADS  Google Scholar 

  73. F. Scheck and A. Wullschleger Nucl. Phys. B67(1973)504

    Article  ADS  Google Scholar 

  74. D.A. Bryman et al. Phys. Rep. 88(1982)152

    Article  ADS  Google Scholar 

  75. O.Yu. Bardin et al. Sov. Nucl. Phys. 14(1982)239

    Google Scholar 

  76. A. Kersch, Diplomarbeit, Univ. Mainz, 1984, unpublished; A. Kersch and F. Scheck Nucl. Phys. B263(1986)475

    ADS  Google Scholar 

  77. H.W. Atherton et al. Phys. Lett. 158B(1985)81

    ADS  Google Scholar 

  78. S.R. Amendolia et al. Phys. Lett. 146B(1984)116

    ADS  Google Scholar 

  79. N. Paver and M.D. Scadron, Nuovo Cim. 78A(1983)159

    Article  ADS  Google Scholar 

  80. L. Ametller et al. Phys. Rev. D29(1984)916

    ADS  Google Scholar 

  81. C.Y. Lee, Phys. Rev. D32(1985)658

    ADS  Google Scholar 

  82. Q. Ho-Kim and H.C. Lee, Phys. Rev. D29(1984)1017

    ADS  Google Scholar 

  83. N.F. Nasrallah et al. Phys. Lett. 113B(1982)61

    ADS  Google Scholar 

  84. A. Stetz et al. Nucl. Phys. B138(1978)285

    Article  ADS  Google Scholar 

  85. A. Bay et al. Phys. Lett 174B(1986)455

    ADS  Google Scholar 

  86. L. Piilonen et al. LAMPF preprint 1986, Lake Louise Conf. May 1986

    Google Scholar 

  87. S. Egli et al. Phys. Lett. 175B(1986)97

    ADS  Google Scholar 

  88. S. Weinberg, Phys. Rev. Lett. 40(1978)223

    Article  ADS  Google Scholar 

  89. F. Wilczek, Phys. Rev. Lett 40(1978)279

    Article  ADS  Google Scholar 

  90. R.D. Peccei and H.R. Quinn, Phys. Rev. Lett. 38(1977)1440

    Article  ADS  Google Scholar 

  91. R.D. Peccei and H.R. Quinn, Phys. Rev. D16(1977)1791

    Google Scholar 

  92. S. Yamada, Proc. of the 1983 Int.Symp. on Lepton and Photon Interactions at High Energies, Cornell University, Aug. 4–9, 1983.

    Google Scholar 

  93. Y. Asano et al. Phys. Lett. 107B(1981)159

    ADS  Google Scholar 

  94. For a review of axion bounds see A. Zehnder, in Fundamental Interactions in Low-Energy Systems, Plenum Press, New York, 1985 and references therein.

    Google Scholar 

  95. J. Schweppe et al. Phys. Rev. Lett. 51(1983)2261

    Article  ADS  Google Scholar 

  96. M. Clemente et al. Phys. Rev. Lett. 137B(1984)41

    ADS  Google Scholar 

  97. T. Cowan et al. Phys. Rev. Lett. 54(1985)761.

    Article  Google Scholar 

  98. T. Cowan et al. Phys. Rev. Lett. 56(1986)444

    Article  ADS  Google Scholar 

  99. A. Shafer et al. J. Phys. G:Nucl. Phys. 11(1985)L69

    Article  ADS  Google Scholar 

  100. A. B. Balantekin et al. Phys. Rev. Lett. 55(1985)461

    Article  ADS  Google Scholar 

  101. J. Reinhardt et al. Phys. Rev. C33(1986)194

    ADS  Google Scholar 

  102. L. Kraus and F. Wilczek, NSF-ITP-86-18

    Google Scholar 

  103. R. D. Peccei et al. DESY 86–013(1986)

    Google Scholar 

  104. W.A. Bardeen et al. DESY 86–054(1986)

    Google Scholar 

  105. R. Eichler et al. Phys. Lett 175B(1986)101

    ADS  Google Scholar 

  106. L.M. Krauss et al. report YTP 86–13 /CALT-68-1356, May 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Engfer, R. (1986). Study of Rare and Forbidden μ- and π-Decays. In: Klapdor, H.V. (eds) Weak and Electromagnetic Interactions in Nuclei. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71689-8_157

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71689-8_157

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71691-1

  • Online ISBN: 978-3-642-71689-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics