Molecular Cloning and Physiological Analysis of the Start Gene cdc25 in Budding Yeast

  • L. Alberghina
  • M. Baroni
  • S. Livian
  • G. Frascotti
  • E. Martegani
Conference paper
Part of the Colloquium der Gesellschaft für Biologische Chemie 10.–12. April 1986 in Mosbach/Baden book series (MOSBACH, volume 37)


There is increasing interest for the yeast Saccharomyces cevevisiae in studies on the regulatory mechanisms of cell proliferation, since it is particularly well characterized from the biochemical and genetic point of view and furthermore the recombinant DNA techniques have now greatly enhanced the power of classical yeast genetics (Hinnen et al. 1978). S. cerevisiae presents a major cell cycle control function in G1 , in the regulatory area called Start (Hartwell 1974, Hartwell et al. 1974). At Start an yeast cell integrates many intracellular and environmental signals, and then it is committed to continue proliferation or switched to differentiative pathways such as sporulation, conjugation, or to entry in stationary phase. Growth to a critical cell size appears to be required among other conditions to traverse Start and to be committed to DNA replication and cell division (Nurse 1981, Pringle and Hartwell 1981).


Restrictive Temperature CDC25 Gene cAMP Metabolism CDC25 Locus CDC25 mRNA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baroni M, Velati-Bellini A, Vanoni M, Martegani E (1984) Abstr SIB, Ischia, ItalyGoogle Scholar
  2. Beach D, Durkacz B, Nurse P (1982) Nature (London) 300:706–708CrossRefGoogle Scholar
  3. Bishop JM (1985) Cell 42: 33–38Google Scholar
  4. Boutelet F, Petitjean A, Hilger F (1985) EMBO J 4:2635–2641PubMedGoogle Scholar
  5. Camonis JH, Kalekine M, Gondre B, Garreau H, Boy-Marcotte E, Jacquet M (1986) EMBO J 5:375–380PubMedGoogle Scholar
  6. Casperson GF, Walker N, Bourne HR (1985) Proc Natl Acad Sci USA 82:5060–5063PubMedCrossRefGoogle Scholar
  7. Dawes IW, Calvert GR (1984) J Gen Microbiol 130:605–613PubMedGoogle Scholar
  8. Durkacz B, Carr A, Nurse P (1986) EMBO J 5:369–374PubMedGoogle Scholar
  9. Hartwell LH (1974) Bacteriol Rev 38:164–198PubMedGoogle Scholar
  10. Hartwell LH, Mortimer LK, Culotti J, Culotti M (1973) Genetics 74:267–286PubMedGoogle Scholar
  11. Hartwell LH, Culotti J, Pringle JR, Reid BJ (1974) Science 183:46–51PubMedCrossRefGoogle Scholar
  12. Hinnen A, Hicks JB, Fink GR (1978) Proc Natl Acad Sci USA 75:1929–1933PubMedCrossRefGoogle Scholar
  13. Iida H, Yahara I (1984a) J Cell Biol 99:199–207PubMedCrossRefGoogle Scholar
  14. Iida H, Yahara I (1984b) J Cell Biol 98:1185–1193PubMedCrossRefGoogle Scholar
  15. Iida H, Yahara I (1984c) J Cell Biol 99:1441–1450PubMedCrossRefGoogle Scholar
  16. Ito H, Fukuda Y, Murata K, Kimura A (1983) J Bacterid 153:163–168PubMedGoogle Scholar
  17. Johnston GC (1977) J Bacteriol 132:738–739PubMedGoogle Scholar
  18. Kataoka T, Broek D, Wigler M (1985) Cell 43:493–505PubMedCrossRefGoogle Scholar
  19. Lorincz AT, Reed SI (1983) Nature (London) 307:183–185CrossRefGoogle Scholar
  20. Lorincz AT, Miller MJ, Xuong NH, Geiduschek EP (1982) Mol Cell Biol 2:1532–1545PubMedGoogle Scholar
  21. Martegani E, Vanoni M, Baroni M (1984) Eur J Biochem 144:205–210PubMedCrossRefGoogle Scholar
  22. Martegani E, Baroni M, Vanoni M (1986) Exp Cell Res 162:544–548PubMedCrossRefGoogle Scholar
  23. Matsumoto K, Uno I, Ishikawa T (1983a) Exp Cell Res 146:151–161PubMedCrossRefGoogle Scholar
  24. Matsumoto K, Uno I, Ishikawa T (1983b) Cell 32:417–423PubMedCrossRefGoogle Scholar
  25. Matsumoto K, Uno I, Ishikawa T (1985a) Yeast 1:15–24PubMedCrossRefGoogle Scholar
  26. Matsumoto K, Uno I, Kato K, Ishikawa T (1985b) Yeast 1:25–38PubMedCrossRefGoogle Scholar
  27. Melton DA, Krieg PA, Rebagliati MR, Maniatis T, Zinn K, Green MR (1984) Nucleic Acids Res 18:7035–7056CrossRefGoogle Scholar
  28. Nasmyth KA, Reed SI (1980) Proc Natl Acad Sci USA 77:2119–2123PubMedCrossRefGoogle Scholar
  29. Nurse P (1981) In: Gull K (ed) The fungal nucleus. Cambridge Univ Press, New York, pp 330–345Google Scholar
  30. Orr-Weaver TL, Szostak JW, Rothstein RJ (1981) Proc Natl Acad Sci USA 78:6354–6358PubMedCrossRefGoogle Scholar
  31. Popolo L, Alberghina L (1984) Proc Natl Acad Sci USA 81:120–124PubMedCrossRefGoogle Scholar
  32. Popolo L, Vai M, Alberghina L (1986) J Biol Chem 261:3479–3481PubMedGoogle Scholar
  33. Pringle JR, Hartwell LH (1981) In: Strathern GN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces cerevisiae-life cycle and inheritance. Cold Spring Harbor Lab, Cold Spring Harbor New York, pp 97–142Google Scholar
  34. Reed S (1980) Genetics 95:561–577PubMedGoogle Scholar
  35. Reed SI, Ferguson J, Groppe GC (1982) Mol Cell Biol 2:412–425PubMedGoogle Scholar
  36. Reed SI, Hadwiger JA, Lorincz AT (1985) Proc Natl Acad Sci USA 82:4055–4059PubMedCrossRefGoogle Scholar
  37. Shilo V, Simchem G, Shilo B (1978) Exp Cell Res 112:241–248PubMedCrossRefGoogle Scholar
  38. Shilo B, Riddle VGH, Pardee AB (1979) Exp Cell Res 123:221–227PubMedCrossRefGoogle Scholar
  39. Sudbery PE, Goodey AR, Carter BLA (1980) Nature (London) 288:401–403CrossRefGoogle Scholar
  40. Tatchell K, Robinson LC, Breitenbach M (1985) Proc Natl Acad Sci USA 82:3785–3789PubMedCrossRefGoogle Scholar
  41. Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Cameron S, Broach J, Matsumoto K, Wigler M (1985) Cell 40:27–36PubMedCrossRefGoogle Scholar
  42. Whiteway M, Szostak JW (1985) Cell 43:483–492PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • L. Alberghina
  • M. Baroni
  • S. Livian
  • G. Frascotti
  • E. Martegani
    • 1
  1. 1.Dipartimento di Fisiologia e Biochimica Generali-Sezione di Biochimica ComparataUniversità di MilanoMilanoItaly

Personalised recommendations