Advertisement

Molecular Biology of Muscle and Neural Acetylcholine Receptors

  • Steve Heinemann
  • Jim Boulter
  • John Connolly
  • Dan Goldman
  • Karen Evans
  • Doug Treco
  • Marc Ballivet
  • Jim Patrick
Part of the NATO ASI Series book series (volume 3)

Abstract

Most theories of nervous system function depend heavily on the existence and properties of the synapse. For this reason, this structure has been a focal point for neuroscience research for many decades. The best understood synapse is the neuromuscular junction because of its accessibility to biochemical and electrophysiological techniques and because of its elegant, well-defined structure (for recent reviews see Conti-Tronconi and Raftery 1982; Maelicke 1984; Popot and Changeux 1984; Stroud and Finer-Moore 1985; Karlin et al 1986; McCarthy et al 1986).

Keywords

Acetylcholine Receptor Nicotinic Receptor Nicotinic Acetylcholine Receptor Alpha Subunit Gamma Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ballivet, M., Nef, P., Stalder, R. and Fulpius, B. (1983) Genomic sequences encoding the alpha-subunit of acetylcholine receptor are conserved in evolution. Cold Spring Harbor Symposium on Quantitative Biology 48:83–87.Google Scholar
  2. 2.
    Ballivet, M., Patrick, J., Lee, J. and Heinemann, S.(1982) Molecular cloning of eDNA coding for the gamma subunit of Torpedo acetylcholine receptor. Proc. Natl. Acad. Sci. USA. 79:4466–4470.PubMedCrossRefGoogle Scholar
  3. 3.
    Barnard, E.A., Miledi, R. and Sumikawa, K. (1982) Translation of exogeneous messenger RNA coding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes. Proc. R. Soc. Lond. B 215: 241–246.PubMedCrossRefGoogle Scholar
  4. 4.
    Berg, D.R. and Hall, Z.W. (1975) Loss of alpha-bungarotoxin from junctional and extrajunctional acetylcholine receptors in rat diaphragm muscle in vivo and in organ culture. J. Physiol. 252:771–789.PubMedGoogle Scholar
  5. 5.
    Berg, D.R. and Hall, Z.W. (1974) Fate of alpha-bungarotoxin bound to acetylcholine receptors of normal and denervated muscle. Science 184:473–474.PubMedCrossRefGoogle Scholar
  6. 6.
    Bevan, S. and Steinbach, J.H. (1977) The distribution of alpha-bungarotoxin binding sites on mammalian skeletal muscle developing in vivo. J. Physiol. 267:195–213.PubMedGoogle Scholar
  7. 7.
    Boulter, J. and Patrick, J. (1977) Purification of an acetylcholine receptor from a nonfusing muscle cell line. Biochemistry 16:4900.PubMedCrossRefGoogle Scholar
  8. 8.
    Boulter, J., Evans, K., Mason, P., Martin, G., Heinemann, S., and Patrick, J. (1986a) Isolation of a clone coding for the precursor to the beta-subunit of mouse muscle nicotinic acetylcholine receptor. (manuscript in preparation).Google Scholar
  9. 9.
    Boulter, J.B., Goldman, D., Evans, K., Martin, G., Stengelin, S., Heinemann, S. and Patrick, J. (1985b) Isolation, sequence and preparation of a eDNA clone coding for the gamma subunit of mouse muscle nicotinic acetylcholine receptor. J. Neurosci. Res. In Press.Google Scholar
  10. 10.
    Boulter, J., Evans, K., Goldman, D., Martin, G., Treco, D., Heinemann, S., and Patrick, J. (1986e) Isolation of a eDNA clone coding for a possible neural nicotinic acetylcholine receptor alpha-subunit. Nature 319:368–374.CrossRefGoogle Scholar
  11. 11.
    Boulter, J., Luyten, W., Evans, K., Mason, P., Ballivet, M., Goldman, D., Stengelin, S., Martin, G., Heinemann, S. and Patrick, J. (1985) Isolation of a clone coding for the alpha-subunit of a mouse acetylcholine receptor. J. Neurosci. 5:2545–2552.PubMedGoogle Scholar
  12. 12.
    Brockes, J.P. and Hall, Z.W. (1975a) Acetylcholine receptors in normal and denervated rat diaphragm muscle. H. Comparison of junctional and extrajunctional receptors. Biochemistry 14:2100.CrossRefGoogle Scholar
  13. 13.
    Brockes, J.P. and Hall, Z.W. (1975b) Synthesis of acetylcholine receptor by denervated rat diaphragm muscle. Proc. Nat. Acad. Sci. 72:1368–1372.CrossRefGoogle Scholar
  14. 14.
    Chang, C.C. and Huang, M.C. (1975) Turnover of junctional and extrajunctional acetylcholine receptors of the rat diaphragm. Nature 253:643–644.PubMedCrossRefGoogle Scholar
  15. 15.
    Clarke, P.B.S., Schwartz, R.D., Paul S.M., Pert, C.B. and Pert A. (1985) Nicotinic binding in rat brain: autoradiographie comparison of [3H] acetylcholine, [3H] nicotine, and [125I]-alpha-bungarotoxin. J. Neurosci. 5:1307–1315.PubMedGoogle Scholar
  16. 16.
    Claudio, T., Ballivet, M., Patrick, J., and Heinemann, S. (1983) Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor gamma-subunit. Proc. Natl. Acad. Sci. 80:1111–1115.PubMedCrossRefGoogle Scholar
  17. 17.
    Cohen, S.A. and Fischbach, G.D. (1973) Regulation of muscle acetylcholine sensitivity by muscle activity in cell culture. Science 181:76–78.PubMedCrossRefGoogle Scholar
  18. 18.
    Conti-Tronconi, B.M. and Raftery, M.A. (1982) The nicotinic cholinergie receptor: Correlation of molecular structure with functional properties. Annual Review of Biochemistry 51:491–530.PubMedCrossRefGoogle Scholar
  19. 19.
    Cox, K., DeLeon, D., Angerer, L. and Angerer, R. (1984) Detection of mRNAs in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev. Biol. 101:485–502.PubMedCrossRefGoogle Scholar
  20. 20.
    Devillers-Thiery A., Giraudat, J., Bentaboulet, M., Changeux, J-P. (1983) Complete mRNA coding sequence of the acetylcholine binding alpha-subunit of Torpedo mamorata acetylcholine receptor: A model for the transmembrane organization of the polypeptide chain. Proc. Natl. Acad. Sci. USA 80:2067–2071.PubMedCrossRefGoogle Scholar
  21. 21.
    Finer-Moore, J. and Stroud, R.M. (1984) Amphipathic analysis and possible conformation of the ion channel in an acetylcholine receptor. Proc. Natl. Acad. Sci. USA 81:155–159.PubMedCrossRefGoogle Scholar
  22. 22.
    Goldman, D., Boulter, J., Heinemann, S. and Patrick, J. (1985) Muscle denervation increases the levels of two mRNA coding for the acetylcholine receptor alpha-subunit. J. Neurosci. 5:2553–2558.PubMedGoogle Scholar
  23. 23.
    Goldman, D., Simmons, D., Swanson, L., Patrick, J. and Heinemann, S. (1986) Mapping brain areas expressing RNA homologous to two different acetylcholine receptor alpha subunit cDNAs. Proc. Natl. Acad. Sci. (in press).Google Scholar
  24. 24.
    Guy, H.R. (1984) A structural model of the acetylcholine receptor channel based on partition energy and helix packing calculations. Biophys. J. 45:249–261.PubMedCrossRefGoogle Scholar
  25. 25.
    Hall, Z.W. and Reiness, C.G. (1977) Electrical stimulation of denervated muscles reduces incorporation of methionine into the ACh receptor. Nature 268:655–657.PubMedCrossRefGoogle Scholar
  26. 26.
    Hall, Z.W., Roisin, M.P., Gu, Y. and Gorin, P.D. (1983) A developmental change in the immunological properties of acetylcholine receptors at the rat neuromuscular junction. Cold spring Harbor Symposia on Quantitative Biology, Vol. XLVIII:101–108.Google Scholar
  27. 27.
    Heinemann, S., Merlie, J. and Lindstrom, J. (1978) Modulation of acetylcholine receptor in rat diaphragm by anti-receptor sera. Nature 274:65–68.PubMedCrossRefGoogle Scholar
  28. 28.
    Kao, P.N., Dwork, A.J., Kaldany, R.J., Silver, M.L., Wideman, J., Stein, S. and Karlin, A. (1984) Identification of two alpha-subunit half-cystines specifically labeled by an affinity reagent for the acetylcholine binding site. J. Biol. Chem. 259:1162–1165.Google Scholar
  29. 29.
    Karlin, A., DiPaola, M., Kao, P.N. and Lobel, P. (1986) Functional sites and transient states of the nicotinic acetylcholine receptor. In: Proteins of Excitable Membrane (B. Hille and D.M Fambrough, eds.) John Wiley Inc.Google Scholar
  30. 30.
    Karlin, A., Weill, C.L., McNamee, M.G. and Valderrama, R. (1976) Facets of the structures of acetylcholine receptors from Electrophorus and Torpedo. Cold Spring Harbor Symposia on Quantitative Biology, Vol. XL, pp. 203–210.Google Scholar
  31. 31.
    Klarsfeld, A. and Changeux J-P. (1985) Activity regulates the levels of acetylcholine receptor alpha-subunit mRNA in cultured chicken myotubes. Proc. Natl. Acad. Sci. USA 82:4558–4562.PubMedCrossRefGoogle Scholar
  32. 32.
    Kubo, T., Noda, M., Takai, T., Tanabe, T., Kayano, T., Shimizu, S., Tanaka, K., Takahashi, H., Hirose, T., Inayama, S., Kikuno, R., Miyata, T., and Numa, S. (1985) Primary structure of delta-subunit precursor of calf muscle acetylcholine receptor deduced from cDNA sequence. Eur. J. Biochem. 149:5–13.PubMedCrossRefGoogle Scholar
  33. 33.
    Kyte, J. and Doolittle, R.F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105–132.PubMedCrossRefGoogle Scholar
  34. 34.
    La Polla, R.J., Mixter-Mayne, K. and Davidson, N. (1984) Isolation and characterization of a eDNA clone for the complete protein coding region of the delta-subunit of the mouse acetylcholine receptor. Proc. Natl. Acad. Sci. (USA) 81:7970–7974.CrossRefGoogle Scholar
  35. 35.
    Lomo, T. and Westguard, R.H. (1975) Further studies on the control of ACh sensitivity by muscle activity in the rat. J. Physio., London 252:603–626.Google Scholar
  36. 36.
    Maelicke, A. (1984) Biochemical aspects of cholinergie excitation. Angew. Chem. Int. Ed. Engl. 23:195–221.CrossRefGoogle Scholar
  37. 37.
    McCarthy, M.P., Earnest, J.P., Young, E.F., Choe, S. and Stroud, R.M. (1986) The molecular neurobiology of the acetylcholine receptor. Ann. Rev. Neurosei. 9:383–413.CrossRefGoogle Scholar
  38. 38.
    Merlie, J.P., Isenberg, K.E., Russell, S.D. and Sanes, J.R. (1984) Denervation supersensitivity in skeletal muscle: Analysis with a cloned eDNA probe. J. Cell Biol. 99:332–335.PubMedCrossRefGoogle Scholar
  39. 39.
    Miledi, R. (1960a) The acetylcholine sensitivity of frog muscle fibers after complete or partial denervation. J. Physiol. 151:1–23.Google Scholar
  40. 40.
    Miledi, R. (1960b) Junctional and extrajunctional receptors in skeletal muscle fibers. J. Physiol. 151:24–30.Google Scholar
  41. 41.
    Mishina, M., Kurosaki, T., Tobimatsu, T., Morimoto, Y., Noda, M., Yamamoto, T., Terao, M., Lindstrom, J., Takahashi, T., Kuno, M. and Numa, S. (1984) Expression of functional acetylcholine receptor from cloned eDNAs. Nature 307:604–608.PubMedCrossRefGoogle Scholar
  42. 42.
    Mishina, M., Tobimatsu, T., Imoto, K., Tanaka, K., Fujita, Y., Fukuda, K., Kurasaki, M., Takahashi, H., Morimoto, Y., Hirosi, T., Inayama, S., Takahashi, T., Kuno, M. and Numa, S. (1985) Location of functional regions of acetylcholine receptor alpha-subunit by site-directed mutagenesis. Nature 313:364–369.PubMedCrossRefGoogle Scholar
  43. 43.
    Nef, P., Mauron, A., Stalder, R., Alliod, C. and Ballivet M. (1984) Structure linkage and sequence of the two genes encoding the delta and gamma subunits of the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA. 81:7975–7979.Google Scholar
  44. 44.
    Neher, E. and Sakmann, B. (1976) Noise analysis of drug induced voltage clamp currents in denervated frog muscle fibers. J. Physiol. 258: 705.PubMedGoogle Scholar
  45. 45.
    Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T. and Numa, S. (1982) Primary structure of alpha-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 299:793–797.PubMedCrossRefGoogle Scholar
  46. 46.
    Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Hirose, T., Asai, M., Takashima H., Inayama, S., Miyata, T. and Numa, S. (1983a) Primary structures of beta-and delta-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature 301:251–255.CrossRefGoogle Scholar
  47. 47.
    Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Tanabe, T., Shimizu, S., Kikyotani, S., Kayano, T., Hirose, T., Inayama, S., Numa, S. (1983) Cloning and sequence analysis of cDNA and human genomic DNA encoding alpha-subunit precursor of muscle acetylcholine receptor. Nature 305:818–823.PubMedCrossRefGoogle Scholar
  48. 48.
    Patrick, J., Lindstrom, J., Culp, W. and McMillan, J. (1973) Studies on purified acetylcholine receptor and anti-acetylcholine receptor antibody. Proc. Nat. Acad. Sci. 70:3334–3338.PubMedCrossRefGoogle Scholar
  49. 49.
    Patrick, J. and Stallcup, W. (1977a) Immunological distinction between acetylcholine receptor and the alpha-bungarotoxin-binding component on sympathetic neurons. Proc. Natl. Acad. Sci. USA 74:4689.CrossRefGoogle Scholar
  50. 50.
    Patrick, J. and Stallcup, W. (1977b) Alpha-bungarotoxin binding and cholinergie receptor function on a rat sympathetic nerve line. J. Biol. Chem. 252:8629.Google Scholar
  51. 51.
    Patrick, J., Ballivet, M., Boas, L., Claudio, T., Forrest, J., Ingraham, H., Mason, P., Stengelin, S., Ueno, S. and Heinemann S. (1983) Molecular cloning of the acetylcholine receptor. Cold Spring Harbor Symposia on Quantitative Biology, Volume XLVIII. Page 71–79.Google Scholar
  52. 52.
    Patrick, J., Heinemann, S.F., Lindstrom, J., Schubert, D. and Steinbach, J.H. (1972) Appearance of acetylcholine receptors during differentiation of a myogenic cell line. Proc. Nat. Acad. Sci. 69:2762–2766.PubMedCrossRefGoogle Scholar
  53. 53.
    Popot, J-L. and Changeux, J-P. (1984) The nicotinic receptor of acetylcholine: structure of an oligomeric integral membrane protein. Physiol. Rev. 64:1162–1239.Google Scholar
  54. 54.
    Sakmann, B. (1978) Acetylcholine-induced ionic channels in rat skeletal muscle. FASEB 37:2654–2659.Google Scholar
  55. 55.
    Schiffer, M. and Edmundson, A.B. (1967) Biophys. J. 7:121–135.PubMedCrossRefGoogle Scholar
  56. 56.
    Schubert, D., Harris, A.J., Devine, C. and Heinemann, S. (1974) Characterization of a unique muscle cell line. J. Cell Biol. 61:398–413.PubMedCrossRefGoogle Scholar
  57. 57.
    Shibahara, S., Kubo, T., Perski, H.J., Takahashi, H., Noda, M. and Numa, S. (1985) Cloning and sequence analysis of human genomic DNA encoding gamma subunit precursor of muscle acetylcholine recetor. Eur. J. Biochem. 146:15–22.PubMedCrossRefGoogle Scholar
  58. 58.
    Sine, S. and Taylor, P. (1980) The relationship between agonist occupation and the permeability response of the cholinergie receptor revealed by bound cobra alpha-toxin. J. Biol. Chem. 255:10144–10156.PubMedGoogle Scholar
  59. 59.
    Sine, S.M. and Steinbach, J.H. (1984a) Activation of a nicotinic acetylcholine receptor. Biophys. J. 45:175–185.CrossRefGoogle Scholar
  60. 60.
    Sine, S.M. and Steinbach, J.H. (1984b) Agonists block currents through acetylcholine receptor channels. Biophys. J. 46:277–284.CrossRefGoogle Scholar
  61. 61.
    Sine, S.M. and Steinbach, J.H. (1985a) Activation of acetylcholine receptors on clonal mammalian BC3H-I cells by low concentrations of agonist. J. Physiol. 358:91–108.Google Scholar
  62. 62.
    Sine, S.M. and Steinbach, J.H. (1985b) Acetylcholine receptor activation by a site-selective ligand: nature of brief open and closed states in BC3H-I cells. J. Physiol. 370:357–379.Google Scholar
  63. 63.
    Steinbach, J.H. (1981) Developmental changes in acetyl- choline receptor aggregates at rat skeletal neuromuscular junctions. Dev. Biol. 84:267–276.Google Scholar
  64. 64.
    Steinbach, J.H., Merlie, J., Heinemann, S. and Bloch, R. (1979) Degradation of junctional and extrajunctional acetylcholine receptors by developing rat skeletal muscle. Proc. Nat. Acad. Sci. 76:3547–3551.PubMedCrossRefGoogle Scholar
  65. 65.
    Stroud, R.M. and Finer-Moore, J. (1985) Acetylcholine receptor structure, function and evolution. Ann. Rev. Cell Biol. 1:369–401.CrossRefGoogle Scholar
  66. 66.
    Swanson, L.W., Sawchenko, P.E., Rivier, J. and Vale, W.W. (1983) Organization of ovine corticoptropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendo. 36:165–186.CrossRefGoogle Scholar
  67. 67.
    Takai, T., Noda, M., Furutani, Y., Takahashi, H., Notake, M., Shimizu, S., Kayano, T., Tanabe, T., Tanaka, K., Hirose, T., Inayama, S. and Numa, S. (1984) Primary structure of gamma subunit of calf-muscle acetylcholine receptor deduced from the cDNA sequence. Eur. J. Biochem. 143:109–115.PubMedCrossRefGoogle Scholar
  68. 68.
    Tanabe, T., Noda, M., Furutani, Y., Takai, T., Takahashi, H., Tanaka, K-I., Hirose, T., Inayama, S. and Numa S. (1984) Primary structure of beta subunit precursor of calf muscle acetylcholine receptor deduced from cDNA sequence. Eur. J. Biochem. 144:11–17.PubMedCrossRefGoogle Scholar
  69. 69.
    Wennogle, L.P., Oswald, R., Saitoh, T. and Changeux, J.-P. (1981) Biochemistry 20:2492–2497.PubMedCrossRefGoogle Scholar
  70. 70.
    White, M.M., Mayne, K.M., Lester, H.A. and Davidson, N. (1985) Mouse-Torpedo hybrid acetylcholine receptors: Functional homology does not equal sequence homology. Proc. Natl. Acad. Sci. USA 82:4852–4856.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Steve Heinemann
    • 1
  • Jim Boulter
    • 1
  • John Connolly
    • 1
  • Dan Goldman
    • 1
  • Karen Evans
    • 1
  • Doug Treco
    • 1
  • Marc Ballivet
    • 1
  • Jim Patrick
    • 1
  1. 1.Molecular Neurobiology LaboratoryThe Salk InstituteLa JollaUSA

Personalised recommendations