Skip to main content

Molecular Electrophysiology of Cloned AChR Channels expressed in Xenopus Oocytes

  • Conference paper
Nicotinic Acetylcholine Receptor

Part of the book series: NATO ASI Series ((ASIH,volume 3))

  • 105 Accesses

Abstract

At present, the nicotinic acetylcholine receptor (AChR) is the best studied ion channel protein. Extensive biochemical and structural studies were possible because of its abundance in the electric organs of the fish Torpedo and Electrophorus 1, The AChR of the neuromuscular synapse has been studied from the beginnings of electrophysiology 2,3, and it has served as a paradigm for the development and application of the patch clamp technique 4–6, Recently, the primary sequences of all four subunits of the Torpedo AChR 7–12, of five subunits including a novel ε subunit 17 of the calf AChR 13–17, and of various AChR subunits from other species 12,18–20 have been determined by the cloning and sequencing of cDNA. This has opened the way for detailed structural models 21,22, and various aspects of AChR structure and function have been related to specific features of the protein sequence 23. In this context, the electrophysiological study with both whole cell and patch clamp techniques of AChR channels expressed in Xenopus laevis oocytes following the microinjection of mRNA is emerging as a useful approach to the characterization of different types of native or genetically modified receptor-channel proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Changeux J.P. Harvey Lect. 75, 85–254 (1981)

    CAS  Google Scholar 

  2. Katz B., Thesleff S. J. Physiol. 138, 63–80 (1957)

    PubMed  CAS  Google Scholar 

  3. Katz B., Miledi R. J. Physiol. 224, 665–699 (1972)

    PubMed  CAS  Google Scholar 

  4. Neher E., Sakmann B. Nature 260, 799–802 (1976)

    Article  PubMed  CAS  Google Scholar 

  5. Neher E., Sakmann B., Steinbach J H Pflügers Arch. 375, 219–228 (1978)

    Article  CAS  Google Scholar 

  6. Hamill O.P. et al. Pflügers Arch. 391, 85–100 (1981)

    Google Scholar 

  7. Noda M. et al. Nature 299, 793–797 (1982)

    Article  PubMed  CAS  Google Scholar 

  8. Noda M. et al. Nature 301: 251–255 (1983)

    Article  PubMed  CAS  Google Scholar 

  9. Noda M. et al. Nature 302, 528–532 (1983)

    Article  PubMed  CAS  Google Scholar 

  10. Claudio T. et al. Proc. Natl. Acad. Sci. USA 80, 1111–1115 (1983)

    Article  PubMed  CAS  Google Scholar 

  11. Sumikawa K. et al. Nucleic Acids Res. 10, 5809–5822 (1982)

    Article  PubMed  CAS  Google Scholar 

  12. Devillers-Thiery A. et al. Proc. Nati. Acad. Sci. USA 80, 2067–2071 (1983)

    Article  CAS  Google Scholar 

  13. Noda M. et al. Nature 305, 818–823 (1983)

    Article  PubMed  CAS  Google Scholar 

  14. Tanabe T. et al. Eur. J. Biochem. 144, 11–17 (1984)

    Article  PubMed  CAS  Google Scholar 

  15. Takai T. et al. Eur. J. Biochem. 143, 109–115 (1984)

    Article  PubMed  CAS  Google Scholar 

  16. Kubo T. et al. Eur. J. Biochem. 149, 5–13 (1985)

    Article  PubMed  CAS  Google Scholar 

  17. Takai T. et al. Nature 315, 761–764 (1985)

    Article  PubMed  CAS  Google Scholar 

  18. LaPolla R.J., Mayne K.M., Davidson N. Proc. Natl. Acad. Sci. USA 81, 7970–7974 (1984)

    Article  PubMed  CAS  Google Scholar 

  19. Nef P. et al. Proc. Natl. Acad. Sci. USA 81, 7975–7979 (1984)

    Article  PubMed  CAS  Google Scholar 

  20. Shibahara S. et al. Eur. J. Biochem. 146, 15–22 (1985)

    Article  PubMed  CAS  Google Scholar 

  21. Guy H.R. Biophys. J. 45, 249–261 (1984)

    Article  PubMed  CAS  Google Scholar 

  22. Finer-Moore J., Stroud R.M. Proc. Natl. Acad. Sci. USA 81, 155–159 (1984)

    Article  PubMed  CAS  Google Scholar 

  23. Mishina M. et al. Nature 313, 364–369 (1985)

    Article  PubMed  CAS  Google Scholar 

  24. Gurdon J.B. et al Nature 233: 177–182 (1971)

    Google Scholar 

  25. Lane C.D. et al. Eur. J. Biochem. 111, 225–235 (1980)

    Article  PubMed  CAS  Google Scholar 

  26. Asselbergs A.M. Molec. Biol. Rep. 5, 199–208 (1979)

    CAS  Google Scholar 

  27. Mous J.M. et al. J. Biol. Chem. 257, 11822–11828 (1982)

    PubMed  CAS  Google Scholar 

  28. Gundersen C.B., Miledi R., Parker I. Nature 308, 421–424 (1984)

    Article  PubMed  CAS  Google Scholar 

  29. Houamed K.M. et al. Nature 310, 318–321 (1984)

    Article  PubMed  CAS  Google Scholar 

  30. Sumikawa K. et al. Nature 292, 862–864 (1981)

    Article  PubMed  CAS  Google Scholar 

  31. Barnard E.A., Miledi R., Sumikawa K. Proc. Roy. Soc. Lond. B215, 241–246 (1982)

    Article  CAS  Google Scholar 

  32. Miledi R., Sumikawa K. Biomed. Res. 3, 390–399 (1984)

    Google Scholar 

  33. Mishina M. et al. Nature 307, 604–608 (1984)

    Article  PubMed  CAS  Google Scholar 

  34. Sakmann B. et al. Nature 318, 538–543 (1985)

    Article  PubMed  CAS  Google Scholar 

  35. Sakmann B. et al. Nature 318, 538–543 (1985)

    Article  PubMed  CAS  Google Scholar 

  36. Methfessel C. et al. Pflügers Arch, (submitted)

    Google Scholar 

  37. Guharay F., Sachs F. J. Physiol. 352, 685–701 (1984)

    PubMed  CAS  Google Scholar 

  38. Sakmann B., Neher E. in: Single Channel Recording ( B.Sakmann and E.Neher, eds.) Plenum, New York (1983)

    Google Scholar 

  39. Sakmann B., Brenner H.R. Nature 276, 401–402 (1978)

    Article  PubMed  CAS  Google Scholar 

  40. Michler A., Sakmann B. Devl Biol. 80, 1–17 (1980)

    Article  CAS  Google Scholar 

  41. Fischbach G., Schütze S. J. Physiol. 303, 125–137 (1980)

    PubMed  CAS  Google Scholar 

  42. Neher E., Sakmann B. J. Physiol. 258, 705–729 (1976)

    PubMed  CAS  Google Scholar 

  43. Sakmann B., Bormann J., Hamill O.P. Cold Spring Harbor Symp. Quant. Biol. 48, 247–257 (1983)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Methfessel, C. (1986). Molecular Electrophysiology of Cloned AChR Channels expressed in Xenopus Oocytes. In: Maelicke, A. (eds) Nicotinic Acetylcholine Receptor. NATO ASI Series, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71649-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71649-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71651-5

  • Online ISBN: 978-3-642-71649-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics