Lipid-Protein Interactions and Acetylcholine Receptor Function in Reconstituted Membranes

  • M. G. McNamee
  • T. M. Fong
  • O. T. Jones
  • J. P. Earnest
Conference paper
Part of the NATO ASI Series book series (volume 3)


The role of dynamic lipid-protein interactions in regulating the functional activity of membrane proteins has been extensively examined using a wide variety of biophysical techniques (1). The lipids in direct contact with membrane proteins are usually exchangeable with bulk lipids, although the two different types of lipid environments can be readily detected using electron spin resonance techniques (2–4). There is some selectivity in the apparent binding of lipids at the lipid-protein interface, and many membrane proteins are preferentially activated or inhibited by different classes of lipid. However, it has been difficult to establish clear links between lipid-protein interactions and direct effects of lipids on membrane protein function. In part, the problem reflects the comlexity of lipid compositions in native biological membranes and the inherent risks of examining relevant functional properties of membranes in reconstituted systems containing completely defined components. In addition, there may be specific requirements for some membrane proteins that cannot be generalized to predict the effects of lipids on other membrane proteins.


Phosphatidic Acid Spin Label Lipid Environment Biophysical Technique Electron Spin Resonance Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dvaux, P. F. & Seigneuret, M. (1985) Biochim. Biophys. Acta 822, 63–100.Google Scholar
  2. 2.
    Jost, P. C., & Griffith, O. H. (Eds.) (1982) Lip d-Protein Interactions John Wiley, New York.Google Scholar
  3. 3.
    Marsh, D. (1983) Trend Biochem. Sci. 8, 330–333.CrossRefGoogle Scholar
  4. 4.
    Ellena, J. F., Blazing, M. A., & McNamee, M. G. (1983) Biochemistry 22, 5523–5535.PubMedCrossRefGoogle Scholar
  5. 5.
    McNamee, M. G., Jones, O. T., & Fong, T. M. (1986) in Ion Channel Reconstitution (Miller, C., Ed.), pp 231–273, Plenum Press, New York.Google Scholar
  6. 6.
    Finer-Moore, J., & Stroud, R. M. (1984) Proc. Nat. Acad. Sci. U.S.A. 81, 155–159.CrossRefGoogle Scholar
  7. 7.
    Guy, H. R. (1984) Biophys. J. 45, 249–261.PubMedCrossRefGoogle Scholar
  8. 8.
    East, J. M., Jones, O. T., Simmonds, A. C., & Lee, A. G. (1984) J.-Biol. Chem. 259, 8070–8071.PubMedGoogle Scholar
  9. 9.
    Fong, T. M., & McNamee, M. G. (1986) Biochemistry 25, 830–840.PubMedCrossRefGoogle Scholar
  10. 10.
    Criado, M., Eibl, H., & Barrantes, F. J. (1984) J. Biol. Chem. 259, 9188–9198.PubMedGoogle Scholar
  11. 11.
    Ochoa, E. L. M., Dalziel, A. W., & McNamee, M. G. (1983) Biochem. Biophys. Acta 727, 151–162.Google Scholar
  12. 12.
    Brotherus, J. R., Griffith, O. H., Brotherus, M. O., Jost, P. C., Silvius, J. R., & Hokin, L. E. (1981) Biochemistry 20, 5261–5267.PubMedCrossRefGoogle Scholar
  13. 13.
    Simmonds, A. C., Rooney, E. K., & Lee, A. G. (1984) Biochemistry 23, 1432–1441.PubMedCrossRefGoogle Scholar
  14. 14.
    Giraudat, J., Montecucco, C., Bisson, R. & Changeux, J.-P. (1985) Biochemistry 24, 3121–3127.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • M. G. McNamee
    • 1
  • T. M. Fong
    • 1
  • O. T. Jones
    • 1
  • J. P. Earnest
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of CaliforniaDavisUSA

Personalised recommendations