Predictability in Lake Ecosystems: the Role of Biotic Interactions

  • W. Lampert
Part of the Ecological Studies book series (ECOLSTUD, volume 61)


The aim of ecology can probably be defined as “prediction of the abundance and distribution of organisms in time and space”. With respect to ecosystem research this means that we intend to predict how the structure of an ecosystem will change during the season and during ecological time and how a particular system will react to disturbances.


Particulate Organic Carbon Zooplankton Community Biotic Interaction Lake Ecosystem Zooplankton Biomass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson G, Berggren H, Cronberg G, Gelin C (1978) Effects of planktivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia 59: 9–15CrossRefGoogle Scholar
  2. Benndorf J, Kneschke H, Kossatz K, Penz E (1984) Manipulation of the pelagic food web by stocking with predacious fishes. Int Rev Ges Hydrobiol 69: 407–428CrossRefGoogle Scholar
  3. Brooks JL, Dodson SI (1965) Predation, body size, and composition of plankton. Science 150: 28–35PubMedCrossRefGoogle Scholar
  4. Dodson SI (1974a) Zooplankton competition and predation: an experimental test of the size-efficiency hypothesis. Ecology 55: 605–613CrossRefGoogle Scholar
  5. Dodson SI (1974b) Adaptive change in plankton morphology in response to size-selective predation: A new hypothesis of cyclomorphosis. Limnol Oceanogr 19: 721–729CrossRefGoogle Scholar
  6. Geller W (1980) Stabile Zeitmuster in der Planktonsukzession des Bodensees (Uberlinger See). VerhGes Oekol 8: 373–382Google Scholar
  7. Gilbert JJ, Stemberger RS (1985) Control of Keratella populations by interference competition from Daphnia. Limnol Oceanogr 30: 180–188CrossRefGoogle Scholar
  8. Gliwicz ZM, Siedlar E (1980) Food size limitation and algae interfering with food collection in Daphnia. Arch Hydrobiol 88: 155–177Google Scholar
  9. Goulden CE, Henry LL, Tessier AJ (1982) Body size, energy reserves, and competitive ability in three species of Cladocera. Ecology 63: 1780–1789CrossRefGoogle Scholar
  10. Greene CH (1983) Selective prédation in freshwater zooplankton communities. Int Rev Ges Hydrobiol 68: 297–315CrossRefGoogle Scholar
  11. Hall DJ, Threlkeld ST, Burns CW, Crowley PH (1976) The size-efficiency hypothesis and the size structure of zooplankton communities. Annu Rev Ecol Syst 7: 177–208CrossRefGoogle Scholar
  12. Haney JF (1971) An in situ method for the measurement of zooplankton grazing rates. Limnol Oceanogr 16: 970–977CrossRefGoogle Scholar
  13. Hanski I, Ranta E (1983) Coexistence in a patchy environment: three species of Daphnia in rock pools. J Anim Ecol 52: 263–279CrossRefGoogle Scholar
  14. Henrikson L, Nyman HG, Oscarson HG, Stenson JAE (1980) Trophic changes, without changes in the external nutrient loading. Hydrobiologia 68: 257–263CrossRefGoogle Scholar
  15. Hrbáček J (1962) Species composition and the amount of zooplankton in relation to the fish stock. Rozpr Cesk Akad Ved Rada Mat Prir 72: 1–116Google Scholar
  16. Jacobs J (1967) Untersuchungen zur Funktion und Evolution der Zyklomorphose bei Daphnia, mit besonderer Beriicksichtigung der Selektion durch Fische. Arch Hydrobiol 62: 467–541Google Scholar
  17. Kerfoot WC, DeMott WR (1984) Food web dynamics: dependent chains and vaulting. In: Meyers DG, Strickler JR (eds) Trophic interactions within aquatic ecosystems. Westview, New York, pp 347–382Google Scholar
  18. Lampert W (1981) Inhibitory and toxic effects of blue-green algae on Daphnia. Int Rev Ges Hydrobiol 66: 285–298CrossRefGoogle Scholar
  19. Lampert W (1985) The rôle of zooplankton: an attempt to quantify grazing. Proc Int Congr Lakes Pollution and Recovery. Eur Water Pollut Control Ag, Rome, 15th-18th April 1985, pp 54–62Google Scholar
  20. Lampert W (1987) Vertical migration of freshwater zooplankton: indirect effects of vertebrate predators on algal communities. In: Kerfoot WC, Sih A (eds) Predation: direct and indirect impacts on aquatic communities. Univ Press New England, Hannover, pp 291–299Google Scholar
  21. Lampert W, Fleckner W, Rai H, Taylor BE (1986) Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase. Limnol Oceanogr 31: 478–490CrossRefGoogle Scholar
  22. Lampert W, Schober U (1978) Das regelmàfiige Auftreten vonFruhjahrs-Algenmaximumund “Klar- wasserstadium” im Bodensee als Folge von klimatischen Bedingungen und Wechselwirkungen zwischen Phyto- und Zooplankton. Arch Hydrobiol 82: 364–386Google Scholar
  23. Lampert W, Taylor BE (1985) Zooplankton grazing in a eutrophic lake: implications of vertical migration. Ecology 66: 68–82CrossRefGoogle Scholar
  24. Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23: 399–418CrossRefGoogle Scholar
  25. Lynch M (1979) Complex interactions between natural exploiters — Daphnia and Ceriodaphnia. Ecology 59: 552–564CrossRefGoogle Scholar
  26. Neill WE (1985) The effects of herbivore compétition upon the dynamics of Chaoborus prédation. Arch Hydrobiol Beih Ergeb Limnol 21: 483–491Google Scholar
  27. Paine RT (1980) Food webs: Linkage, interaction strength and community infrastructure. J Anim Ecol 49: 667–685CrossRefGoogle Scholar
  28. Porter KG (1977) The plant-animal interface in freshwater ecosystems. Am Sci 65: 159–170Google Scholar
  29. Remmert H (1984) And now? Ecosystem research! In: Cooley JH, Golley FB (eds) Trends in ecological research for the 1980s. Plenum, New York, pp 179–191Google Scholar
  30. Reynolds CS (1984) The ecology of freshwater phytoplankton. Cambridge Univ Press, CambridgeGoogle Scholar
  31. Schober U (1980) Kausalanalytische Untersuchungen der Abundanzschwankungen des Crustaceen-Planktons im Bodensee. Thesis, Univ FreiburgGoogle Scholar
  32. Shapiro J (1980) The importance of trophic-level interactions to the abundance and species composition of algae in lakes. Dev Hydrobiol 2: 105–116Google Scholar
  33. Shapiro J, Wright DI (1984) Lake restoration by biomanipulation: Round Lake, Minnesota, the first two years. Freshwater Biol 14: 371–383CrossRefGoogle Scholar
  34. Sommer U (1985a) Comparison between steady state and non-steady state competition: Experiments with natural phytoplankton. Limnol Oceanogr 30: 335–346CrossRefGoogle Scholar
  35. Sommer U (1985b) Seasonal succession of phytoplankton in Lake Constance. Bio Science 35: 351–357Google Scholar
  36. Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106: 433–471Google Scholar
  37. Stemberger RS, Gilbert JJ (1985) Body size, food concentration, and population growth in planktonic rotifers. Ecology 66: 1151–1159CrossRefGoogle Scholar
  38. Stich HB, Lampert W (1981) Predator évasion as an explanation of diurnal vertical migration by zooplankton. Nature (London) 293: 396–398CrossRefGoogle Scholar
  39. Tillmann U, Lampert W (1984) Compétitive ability of differently sized Daphnia species: An experimental test. J Freshwater Ecol 2: 311–323Google Scholar
  40. Tilman D (1982) Resource competition and community structure. Princeton Univ Press, PrincetonGoogle Scholar
  41. Tilzer MM (1984) Estimation of phytoplankton loss rates from daily photosynthetic rates and observed biomass changes in Lake Constance. J Plankton Res 6: 309–324CrossRefGoogle Scholar
  42. Van Donk E, Ringelberg J (1983) The effect of fungal parasitism on the succession of diatoms in Lake Maarsseveen ( The Netherlands ). Freshwater Biol 13: 241–251CrossRefGoogle Scholar
  43. Wright DI. O’Brien WJ (1984) The development and field test of a tactical model of the planktivorous feeding of White Crappie (Pomoxis annularis). Ecol Monogr 54: 65–98CrossRefGoogle Scholar
  44. Zaret TM (1980) Predation and freshwater communities. Yale Univ Press, New Haven, LondonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • W. Lampert

There are no affiliations available

Personalised recommendations