Ontogeny of Carnosine, Olfactory Marker Protein and Neurotransmitter Enzymes in Olfactory Bulb and Olfactory Mucosa of the Rat

  • F. L. Margolis
  • T. Kawano
  • M. Grillo


Both the olfactory and vomeronasal pathways are neuronal systems in which the sensory neurons are thought to be capable of continuous replenishment and re-innervation of their central targets (Craziadei and Monti-Graziadei 1978; Simmons and Getchell 1981; Hinds et al. 1984; Wang and Halpern 1982). This implies the occurrence of very dynamic morphogenetic and metabolic changes within the epithelium where the cell bodies reside, as well as in the bulb where synaptogenesis takes place. Alterations of the synaptic input of the primary olfactory neurons to their target neurons in the olfactory bulb has demonstrated that the afferent olfactory neurons can modulate the biochemical phenotype expressed by their juxtaglomerular target neurons (Baker et al. 1983, 1984; Kream et al. 1984).


Olfactory Bulb Olfactory Neuron Olfactory Mucosa Muscle Carnosine Olfactory Marker Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen WK, Akeson R (1985) Identification of a cell surface glycoprotein family of olfactory receptor neurons with a monoclonal antibody. J Neurosci 5: 284–296PubMedGoogle Scholar
  2. Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137: 433–458PubMedCrossRefGoogle Scholar
  3. Baker H, Kawano T, Margolis FL, Joh TH (1983) Transneuronal regulation of tyrosine hydroxylase expression in olfactory bulb of mouse and rat. J Neurosci 3: 69–78PubMedGoogle Scholar
  4. Baker H, Kawano T, Albert V, Joh TH, Reis DJ, Margolis FL (1984) Olfactory bulb dopamine neurons survive deafferentation induced loss of tyrosine hydroxylase. Neuroscience 11: 605–615PubMedCrossRefGoogle Scholar
  5. Barbaro D, Fisher DE, Strumeyer DH, Fisher H (1978) Developmental changes and dietary histidine manipulation: Effect on rat olfactory bulb and leg muscle components. J Nutr 108: 1348–1354PubMedGoogle Scholar
  6. Brunjes P, Smith-Crafts LK, McCarty R (1985) Unilateral odor deprivation: Effects on the development of olfactory bulb catecholamines and behavior. Dev Brain Res 22: 1–6CrossRefGoogle Scholar
  7. Chuah Ml, Farbman Al (1983) Olfactory bulb increases marker protein in olfactory receptor cells. J Neurosci 3: 2197–2205PubMedGoogle Scholar
  8. Farbman Al, Margolis FL (1980) Olfactory marker protein during ontogeny: Immunohistochemical localization. Dev Biol 74: 205–215PubMedCrossRefGoogle Scholar
  9. Ferriero D, Margolis FL (1975) Denervation in the primary olfactory pathway of mice. II. Effects on carnosine and other amine compounds. Brain Res 94: 75–86PubMedCrossRefGoogle Scholar
  10. Frosch MP, Dichter MA (1984) Physiology and pharmacology of olfactory bulb neurons in dissociated cell culture. Brain Res 290: 321–332PubMedCrossRefGoogle Scholar
  11. Gonzales-Estrada MT, Freeman WJ (1980) Effects of carnosine on olfactory bulb EEC, evoked potentials and DC potentials. Brain Res 202: 373–386CrossRefGoogle Scholar
  12. Graziadei PPC, Monti Graziadei GA (1978) The olfactory system: A model for the study of neurogenesis and axon regeneration in mammals. In: Cotman CW (ed) Neuronal Plasticity, Raven Press, New York, pp 131–153Google Scholar
  13. Crillo M, Margolis FL (1983) Rabbit muscle carnosine synthetase: Purification and generation of mouse antisera. Soc Neurosci Abstr 9: 1134Google Scholar
  14. Halasz N, Shepherd GM (1983) Neurochemistry of the vertebrate olfactory bulb. Neurosci 10: 579–619CrossRefGoogle Scholar
  15. Hinds JW (1972) Early neuron differentiation in the mouse olfactory bulb. I. Light microscopy. J Comp Neurol 146: 233–252PubMedCrossRefGoogle Scholar
  16. Hinds JW, Hinds PL, McNelly NA (1984) An autoradiographic study of the mouse olfactory epithelium: Evidence for long-lived receptors. Anat Rec 210: 375–383PubMedCrossRefGoogle Scholar
  17. Horinishi H, Crillo M, Margolis FL (1978) Purification and characterization of carnosine synthetase from mouse olfactory bulb. J Neurochem 31: 909–919PubMedCrossRefGoogle Scholar
  18. Kawano T, Margolis FL (1982) Transsynaptic regulation of olfactory bulb catecholamines in mice and rats. J Neurochem 39: 342–348PubMedCrossRefGoogle Scholar
  19. Kream R, Margolis FL (1984) Olfactory Marker Protein: Turnover and transport in normal and regenerating neurons. J Neurosci 4: 868–879PubMedGoogle Scholar
  20. Kream RM, Davis BJ, Kawano T, Margolis FL, Macrides F (1984) Substance P and catecholaminergic expression in neurons of the hamster main olfactory bulb. J Comp Neurol 222: 140–154PubMedCrossRefGoogle Scholar
  21. Laitinen PH, Huhtinen RL, Hietala OH, Pajunen AEI (1985) Ornithine decarboxylase activity in brain regulated by a specific macromolecule, the antizyme. J Neurochem 44: 1885–1891PubMedCrossRefGoogle Scholar
  22. MacLeod NK, Straughan DW (1979) Responses of olfactory bulb neurones to the dipeptide carnosine. Exp Brain Res 34: 183–188PubMedCrossRefGoogle Scholar
  23. Macrides F, Davis BJ (1983) The olfactory bulb. In: Emson P (ed) Biochemical neuroanatomie. Raven Press, New York, pp 391–426Google Scholar
  24. Marasco E, Cornwell-Jones C, Sobrian SK (1979) 6-Hydroxydopamine reduces preference for conspecific but not other familiar odors in rat pups. Pharmacol Biochem Behav 10: 319–323PubMedCrossRefGoogle Scholar
  25. Margolis FL (1974) Carnosine in the primary olfactory pathway. Science 184: 909–911PubMedCrossRefGoogle Scholar
  26. Margolis FL (1975) Biochemical markers of the primary olfactory pathway: A model neural system. In: Agranoff BW, Aprison MH (eds) Advances in neurochemistry, vol I. Plenum Press, New York, 193–246Google Scholar
  27. Margolis FL (1980a) A marker protein for the olfactory chemoreceptor neuron. In: Bradshaw RA, Schneider D (eds) Proteins of the nervous system. Raven Press, New York, pp 59–84Google Scholar
  28. Margolis FL (1980b) Carnosine: An olfactory neuropeptide. In: Barker JL, Smith T (eds) Role of peptides in neuronal function. Dekker, New York, pp 545–572Google Scholar
  29. Margolis FL (1981) Neurotransmitter biochemistry of the mammalian olfactory bulb. In: Cagan RH, Kare MR (eds) Biochemistry of taste and olfaction. Academic Press, London New York, pp 369–394Google Scholar
  30. Margolis FL, Grillo M (1984) Carnosine, homocarnosine and anserine in vertebrate retinas. Neurochem Intl 6: 207–209CrossRefGoogle Scholar
  31. Margolis FL, Grillo M, Kawano T, Farbman Al (1985a) Carnosine synthesis in olfactory tissue during ontogeny: Influence of exogenous ß-alanine. J Neurochem 44: 1459–1464PubMedCrossRefGoogle Scholar
  32. Margolis FL, Sydor W, Teitelbaum Z, Blancher R, Crillo M, Rogers K, Sun S, Gubler U (1985b) Molecular biological approaches to the olfactory system. Olfactory marker protein as a model. Chem Sens 10: 163–174CrossRefGoogle Scholar
  33. Monti Graziadei GA, Stanley RS, Graziadei PPC (1980) The olfactory marker protein in the olfactory system of mouse during development. Neuroscience 5: 1239–1252CrossRefGoogle Scholar
  34. Neidle A, Kandera J (1974) Carnosine — an olfactory bulb peptide. Brain Res 80: 359–364PubMedCrossRefGoogle Scholar
  35. Nicoll RA, Alger BE, Jahr CE (1980) Peptides as putative excitatory neurotransmitters, carnosine, enkephalin, substance P and TRH. Proc R Soc 210: 133–149CrossRefGoogle Scholar
  36. Quinn M, Cagan R (1981) Neurochemical studies of the -aminobutyric acid system in the olfactory bulb. In: Cagan RH, Kare MR (eds) Biochemistry of taste and olfaction. Academic Press, London New York pp 395–415Google Scholar
  37. Ribak CE, Vaughn JE, Saito K, Barber R, Roberts E (1977) Glutamate decarboxylase localization in neurons of the olfactory bulb. Brain Res 126: 1–18PubMedCrossRefGoogle Scholar
  38. Rochel S, Margolis FL (1980) The response of ornithine decarboxylase during neuronal degeneration in olfactory epithelium. J Neurochem 35: 850–860PubMedCrossRefGoogle Scholar
  39. Simmons PA, Getchell TV (1981) Neurogenesis in olfactory epithelium: loss and recovery of transepithelial voltage transients following olfactory nerve section. J Neurophysiol 45: 516–528PubMedGoogle Scholar
  40. Sobrian SK, Cornwell-Jones C (1977) Neonatal 6-hydroxydopamine alters olfactory development. Behav Biol 21: 329–340PubMedCrossRefGoogle Scholar
  41. Specht LA, Pickel VM, Joh TH, Reis DJ (1981) Light-microscopic immunocyto-chemical localization of tyrosine hydroxylase in prenatal rat brain. II. Late ontogeny. J Comp Neurol 199: 255–276PubMedCrossRefGoogle Scholar
  42. Tonosaki K, Shibuya T (1979) Action of some drugs on gecko olfactory bulb mitral cell responses to odor stimulation. Brain Res 167: 180–184PubMedCrossRefGoogle Scholar
  43. Wang RT, Halpern M (1982) Neurogenesis in the vomeronasal epithelium of adult garter snakes. I. Degeneration of bipolar neurons and proliferation of indifferentiated cells following experimental vomeronasal axotomy. Brain Res 237:23–39PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • F. L. Margolis
    • 1
  • T. Kawano
    • 2
  • M. Grillo
    • 1
  1. 1.Roche Research CenterRoche Institute of Molecular BiologyNutleyUSA
  2. 2.Department of Neurosurgery, School of MedicineNagasaki UniversityNagasaki 852Japan

Personalised recommendations