Metal Clusters pp 139-149 | Cite as

Systems of Small Metal Particles: Optical Properties and their Structure Dependences

  • U. Kreibig
Conference paper


Experiments on small particles usually require samples containing large numbers of particles. The properties of such samples are determined both by the properties of the individual particle and by collective effects, if particles are packed closely together. Collective optical effects strongly depend on the topography of the samples. It is shown that they can be classified according to the effective local electromagnetic field. Recent experiments and calculations are presented for optical extinction spectra in the spectral region of plasmon polariton excitations, which clearly show the different behaviour of effective medium-like samples and of samples containing particle aggregates.


Dielectric Function Filling Factor Extinction Spectrum Collective Effect Finite Size Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kreibig, U., Althoff, A., Pressmann, H.: Surf. Sci. 106, 308 (1981)ADSCrossRefGoogle Scholar
  2. 2.
    Kreibig, U., Genzel, L.: In: Contribution of cluster physics to material science and technology. Proc. ASI Agde/France 1982 Davenas, J., Rabette, R. (eds.), p. 373. Den Haag: Nijhoff 1986Google Scholar
  3. 3.
    Quinten, M., Schönauer, D., Kreibig, U.: Proc. Frühjahrstagung DPG 1986, 988Google Scholar
  4. 4.
    Zsigmondy, R.: Das kolloide Gold. Leipzig: Deuticke 1925Google Scholar
  5. 5.
    Schönauer, D., Kreibig, U.: Surf. Sci. 156, 100 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    Quinten, M., Kreibig, U.: Surf. Sci. (in press)Google Scholar
  7. 7.
    Kreibig, U., Genzel, L.: Surf. Sci. 156, 678 (1985)ADSCrossRefGoogle Scholar
  8. 8.
    Kittel, Ch.: Einführung in die Festkörperphysik. München: Oldenbourg 1973Google Scholar
  9. 9.
    Persson, B., Liebsch, A.: Solid State Commun. 44, 1637 (1982); Phys. Rev. B28, 4247 (1983) Liebsch, A., Persson, B.: J. Phys. C16, 5375 (1983)Google Scholar
  10. 10.
    Mie, G.: Ann. Phys. 25, 377 (1908)CrossRefGoogle Scholar
  11. 11.
    Bruggeman, D.: Ann. Phys. 24, 636 (1935)CrossRefGoogle Scholar
  12. 12.
    Ping Sheng: Phys. Rev. B22, 6364 (1980)Google Scholar
  13. 13.
    Niklasson, G., Granqvist, C, Hunderi, O.: Appi. Opt. 20, 26 (1981)ADSCrossRefGoogle Scholar
  14. 14.
    Trinks, W.: Ann. Phys. 22, 561 (1935)MATHCrossRefGoogle Scholar
  15. 15.
    Gerardy, J., Ausloos, M.: Phys. Rev. B22, 4950 (1980); B25, 4204 (1982); B27, 6446 (1983) Clippe, P., Evrard, E., Lucas, A.: Phys. Rev. B14, 1715 (1976) Ausloos, M, Clippe, P., Lucas, A.: Phys. Rev. B18, 1776 (1978)Google Scholar
  16. 16.
    Clanget, R.: Optik 35, 180 (1972) Ruppin, R.: Phys. Rev. Bll, 2871 (1975)Google Scholar
  17. 17.
    Bedeaux, D., Vlieger, J.: Physica 73, 287 (1974)ADSCrossRefGoogle Scholar
  18. 18.
    Felderhof, B., Jones, R.: Z. Phys. B - Condensed Matter 62, 43 (1985)ADSCrossRefGoogle Scholar
  19. 19.
    Geigenmüller, U., Mazur, P.: Physica A (to be published)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • U. Kreibig
    • 1
  1. 1.Fachbereich 11 - PhysikUniversität des SaarlandesSaarbrückenFederal Republic of Germany

Personalised recommendations