Advertisement

Nuclear Envelope Vesicles as an In Vitro Model System to Study Nucleocytoplasmic Transport of Proteins and Ribonucleic Acids

  • N. Riedel
  • M. Bachmann
  • D. Prochnow
  • H. Fasold
Conference paper

Abstract

We describe a procedure for the preparation of nuclear envelope vesicles from rat liver nuclei. These vesicles contain the components of the nuclear envelope, e.g. the pore-complex-lamina fraction, and a residual DNA content of 1.5%. Typical preparations consist of about 90% vesicles with the vesicular character of these envelopes shown by means of microscopic and biochemical studies. Uptake measurements using nuclear and non-nuclear proteins show that the vesicles have a high affinity only for proteins that are specific for the nuclear compartment and indicate that the nuclear envelope affects the uptake kinetics and increases the capacity for nuclear proteins. The nuclear envelope vesicles contain the translocation mechanism for mRNA and show an unidirectional transport of mRNA from the vesicular interior into the medium; this efflux can be stimulated by ATP. Because the vesicles are virtually free of the components of the nuclear interior, but retain properties of intact nuclei, we believe that they are a valuable model system to investigate the structures and mechanisms involved in the regulation of nucleocytoplasmic transport processes.

Keywords

ATPase Activity Nuclear Envelope Uptake Kinetic Nucleocytoplasmic Transport Outer Nuclear Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aaronson R.P. and Blobel G. (1974). J. Cell Biol. 62, 746–754.PubMedCrossRefGoogle Scholar
  2. 2.
    Afzelius B.A. (1955). Exp. Cell Res. 8, 147–158.PubMedCrossRefGoogle Scholar
  3. 3.
    Agutter P.S., Harris J.R. and Stevenson I. (1977). Biochem. J. 162, 671–679.PubMedGoogle Scholar
  4. 4.
    Agutter P.S., Cockrill J.B., Lavine J.E., McCaldin B. and Sim R.B. (1979). Biochem. J. 181, 647–658.PubMedGoogle Scholar
  5. 5.
    Agutter P.S. (1980). Biochem. J. 188, 91–97.PubMedGoogle Scholar
  6. 6.
    Baglia F.A. and Maul G.G. (1983). Proc. Natl. Acad. Sci. USA 80, 2285–2289.PubMedCrossRefGoogle Scholar
  7. 7.
    Bernd A., Schroeder H.C., Zahn R.K. and Mueller W.E.G. (1982). Europ. J. Biochem. 129, 43–49.PubMedCrossRefGoogle Scholar
  8. 8.
    Blobel G. and Potter V.R. (1966). Science 154, 1662–1665.PubMedCrossRefGoogle Scholar
  9. 9.
    Bonner W.M. (1975). J. Cell Biol. 64, 421–430.PubMedCrossRefGoogle Scholar
  10. 10.
    Bonner W.M. (1975). J. Cell Biol. 64, 431–437.PubMedCrossRefGoogle Scholar
  11. 11.
    Bornens M. and Courvalin J.C. (1978). J. Cell Biol. 76, 191–206.PubMedCrossRefGoogle Scholar
  12. 12.
    Clawson G.A., James J., Woo C.H., Friend D.S., Moody D. and Smuckler E.A. (1980). Biochemistry 19, 2748–2756.PubMedCrossRefGoogle Scholar
  13. 13.
    Clawson G.A. and Smuckler E.A. (1982). J. Theor. Biol. 95, 607–613.PubMedCrossRefGoogle Scholar
  14. 14.
    Commerford S.L. (1971). Biochemistry 10, 1993–1999.PubMedCrossRefGoogle Scholar
  15. 15.
    Cox G.S. (1982). J. Cell Sci. 58, 363–384.PubMedGoogle Scholar
  16. 16.
    Dabauvalle M-C., Franke W.W. (1982). Proc. Natl. Acad. Sci. USA 79, 5302–5306.Google Scholar
  17. 17.
    Detke S. and Keller J.M. (1982). J. Biol. Chem. 257, 3905–3911.PubMedGoogle Scholar
  18. 18.
    Dingwall C.S., Sharnick V. and Laskey R.A. (1982). Cell 30, 449–458.PubMedCrossRefGoogle Scholar
  19. 19.
    Dwyer N. and Blobel G. (1976). J. Cell Biol. 70, 581–591.PubMedCrossRefGoogle Scholar
  20. 20.
    Fais D., Prusov A.N. and Polyakov V.Yu. (1982). Cell Biology Int. Rep. 6, 433–441.Google Scholar
  21. 21.
    Fasold, H., Hulla F.W., Ortanderl F., Rack M. (1977) in Methods in Enzymology XLVI, 289–295 (eds. Jakoby W.B. and Wilshek M., Acad.Press N.Y.).Google Scholar
  22. 22.
    Fawcett D.W. (1966). Am. J. Anat. 119, 129–146.PubMedCrossRefGoogle Scholar
  23. 23.
    Feldherr C.M. (1965). J. Cell Biol. 25, 43–51.PubMedCrossRefGoogle Scholar
  24. 24.
    Feldherr C.M., Cohen R.J. and Ogburn J.A. (1983). J. Cell Biol. 96, 1486–1490.PubMedCrossRefGoogle Scholar
  25. 25.
    Franke W.W., Deumling B., Zentgraf H., Falk H. and Rae P.M.M. (1973). Exp. Cell Res. 81, 365–392.PubMedCrossRefGoogle Scholar
  26. 26.
    Franke W.W. (1977) Biochem. Soc. Symp. 42, 125–135.PubMedGoogle Scholar
  27. 27.
    Franke W.W., Scheer U., Krohne G., Jarasch E.D. (1981). J. Cell Biol. 91, 39s–50s.PubMedCrossRefGoogle Scholar
  28. 28.
    Gerace L., Blum A. and Blobel G. (1978). J. Cell Biol. 79, 546–566.PubMedCrossRefGoogle Scholar
  29. 29.
    Gerace L., Ottaviano Y. and Kondor-Koch C. (1982). J. Cell Biol. 95, 826–837.PubMedCrossRefGoogle Scholar
  30. 30.
    Goodwin G.H. and Johns E.W. (1978). Biochim. Biophys. Acta 519, 279–284.Google Scholar
  31. 31.
    Green N.M. (1982). Nature 297, 287–288.PubMedCrossRefGoogle Scholar
  32. 32.
    Gurdon J.B. (1970). Proc. Roy. Soc. Lond.B 176, 303–314.CrossRefGoogle Scholar
  33. 33.
    Horowitz S.B. (1972). J. Cell Biol. 54, 609–625.PubMedCrossRefGoogle Scholar
  34. 34.
    Johns E.W. (1964). Biochem. J. 92, 55–59.PubMedGoogle Scholar
  35. 35.
    Kaempfer R. (1979) in Methods in Enzymology LX, 380–392 (eds. Colowick J.P. and Kaplan N.O., Acad. Press N.Y. )Google Scholar
  36. 36.
    Kalderon D., Roberts B.L., Richardson W.D. and Smith A.E. (1984). Cell 39, 499–509.PubMedCrossRefGoogle Scholar
  37. 37.
    Kletzien R.F. (1980). Biochem. J. 192, 753–759.PubMedGoogle Scholar
  38. 38.
    Kondor-Koch C., Riedel N., Valentin R., Fasold H. and Fischer H. (1982). Europ. J. Biochem. 127, 285–289.PubMedCrossRefGoogle Scholar
  39. 39.
    Krohne G., Franke W.W. and Scheer U. (1978). Exp. Cell Res. 116, 85–102.PubMedCrossRefGoogle Scholar
  40. 40.
    Mardian J.K.W., Paton A.E., Bunick G.J. and Olins D.E. (1980). Science 209, 1534–1536.PubMedCrossRefGoogle Scholar
  41. 41.
    Maul G.G. and Avdalovic N. (1980). Exp. Cell Res. 130, 229–240.PubMedCrossRefGoogle Scholar
  42. 42.
    Paine P.L. and Feldherr C.M. (1972). Exp. Cell Res. 74, 81–98.PubMedCrossRefGoogle Scholar
  43. 43.
    Paine P.L., Moore L.C. and Horowitz S.B. (1975). Nature 254, 109–114.PubMedCrossRefGoogle Scholar
  44. 44.
    Paine P.L. (1975). J. Cell Biol. 66, 652–657.PubMedCrossRefGoogle Scholar
  45. 45.
    Palayoor T., Schumm D.E. and Webb T.E. (1981). Biochim. Biophys. Acta 654, 201–210.Google Scholar
  46. 46.
    Palmiter R.D. (1974). Biochemistry 13, 3606–3615.PubMedCrossRefGoogle Scholar
  47. 47.
    Purrello F., Vigneri R., Clawson G.A. and Goldfine I.D. (1982). Science 216, 1005–1006.PubMedCrossRefGoogle Scholar
  48. 48.
    Rabbani A., Goodwin G.H. and Johns E.W. (1978). Biochem. Biophys. Res. Comm. 81, 351–358.Google Scholar
  49. 49.
    Reeves R. and Chang D. (1983). J. Biol. Chem. 258, 679–687.PubMedGoogle Scholar
  50. 50.
    Sanders C. (1977). Biochem. Biophys. Res. Comm. 78, 1034–1042.CrossRefGoogle Scholar
  51. 51.
    Schatten G. and Thomas M. (1978). J. Cell Biol. 77, 517–535.PubMedCrossRefGoogle Scholar
  52. 52.
    Schumm D.E. and Webb T.E. (1975). Biochem. Biophys. Res. Comm. 67, 706 - 713.PubMedCrossRefGoogle Scholar
  53. 53.
    Schumm D.E. and Webb T.E. (1981). Arch. Biochem. Biophys. 210, 275–279.PubMedCrossRefGoogle Scholar
  54. 54.
    Shelton K.R., Egle P.M. and Cochran D.L. (1981). Biochem. Biophys. Res. Comm. 103, 975–981.CrossRefGoogle Scholar
  55. 55.
    Stick R. and Krohne G. (1982). Exp. Cell Res. 138, 319–330.PubMedCrossRefGoogle Scholar
  56. 56.
    Stuart S.E., Clawson G.A., Rottmann F.M. and Patterson R.J. (1977). J. Cell Biol. 72, 57–66.PubMedCrossRefGoogle Scholar
  57. 57.
    Uberbacher E.C., Mardian J.K.W., Rossi R.M., Olins D.E. and Bunick G.J. (1982). Proc. Natl. Acad. Sci. USA 79, 5258–5262.PubMedCrossRefGoogle Scholar
  58. 58.
    Unwin P.N.T. and Milligan R.A. (1982). J. Cell Biol. 93, 63–75.PubMedCrossRefGoogle Scholar
  59. 59.
    Weisbrod S.T. (1982). Nucleic Acids Res. 10, 2017–2042.PubMedCrossRefGoogle Scholar
  60. 60.
    Wilson E.M. and Spelsberg T.C. (1975) in Methods in Enzymology 40, 171–176 (eds. Colowick S.P. and Kaplan N.O. ), Acad.Press N.Y.Google Scholar
  61. 61.
    Zbarsky I.B. (1978). Int. Rev. Cytol. 54, 295–363.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1986

Authors and Affiliations

  • N. Riedel
    • 1
  • M. Bachmann
    • 1
  • D. Prochnow
    • 1
  • H. Fasold
    • 1
  1. 1.Institut für BiochemieJohann-Wolfgang-Goethe-UniversitätFrankfurt am Main 70Germany

Personalised recommendations