Skip to main content

Fluorescence Photoactivation and Dissipation (FPD)

  • Conference paper
Nucleocytoplasmic Transport

Abstract

Fluorescence methods have emerged as indispensable analytical and tracer techniques for a diverse range of biochemical, biophysical and physical studies that depend upon highly sensitive measurements of physical environment. This emergence has been hastened by advances in low-level light detection and by the development of coherent, variable-wavelength, and polarized excitation sources. Moreover, the spectrum of biological and physical applications of fluorescence methods has been expanded broadly by the development and availability of fluorescent molecules with specifically tailored characteristics. The attachment of these fluorescent molecules to molecular species has become a powerful approach for investigating the structure and dynamics of complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angelides K (1981): Fluorescent and photoactivable fluorescent derivatives of tetrodotoxin to probe the sodium channel of excitable membranes. Biochemistry 20: 4107–4118.

    Article  PubMed  CAS  Google Scholar 

  2. Axelrod D, Koppel D, Schlesinger E, Elson E, Webb W (1976): Mobility measurement by analysis of fluorescence photobleaching recovery kinetics.- Biophys J 16: 1005–1069.

    Google Scholar 

  3. Bellers D (1971). Photo-Fries rearrangement and related photochemical [1,8]-shifts (J=3,5,7) of carbonyl and sulfonyl groups. Advan Photochem 8: 109–159.

    Google Scholar 

  4. Cherry R (1979). Rotational and lateral diffusion of membrane proteins. Biochim Biophys Acta 559: 289–327.

    PubMed  CAS  Google Scholar 

  5. Edidin M, Zagyanski Y, Lardner T (1976). Measurement of membrane protein lateral diffusion in single cells. Science ( Washington, D. C. ) 191: 466–468.

    Google Scholar 

  6. Feigl F, Feigl H, Goldstein 0, (1955). A sensitive and specific test for coumarin through photocatalysis. J Amer Chem Soc 77: 4162–4163.

    CAS  Google Scholar 

  7. Huffman D, Kuhn C, Zweig A (1970): Photoisomerization of 3-aroyl-2-(2-furyl) chromones. An example of quenching of a photochemical reaction by a product. J Amer Chem Soc 92: 599–605.

    Google Scholar 

  8. Jacobson K, Wu E, Poste G, (1976): Measurement of the translational mobility of concanavalin A in glycerol-saline solutions, and on the cell surface by fluorescence recovery after photobleaching. Biochim Biophys Acta 433: 215–222.

    Article  PubMed  CAS  Google Scholar 

  9. Lanni F, Ware B (1982): Modulation detection of fluorescence photobleaching recovery. Rev Sci Instrum 53: 905–908.

    Article  CAS  Google Scholar 

  10. Lewis G, Magel T, Lipkin D (1940): The absorption and emission light by “cis-” and “trans-” stilbenes and the efficiency of photochemical isomerization, J Amer Chem Soc 62: 2973–2980.

    Article  CAS  Google Scholar 

  11. Lippert E, Luder W, (1962): Photochemical “cis-trans” iso-merization of “p”-dimethylaminocinamic acid nitrile. J Phys Chem 66: 2430–433.

    Article  CAS  Google Scholar 

  12. Mallory F, Mallory C, (1984): Photocylization of stilbenes and related molecules. Organic Reactions 30: 1–456.

    CAS  Google Scholar 

  13. Mendenhall D, Kobayashi H, Shih F, Sternson L, Higuchi T, Fabian C, (1978): Clinical analysis of tamoxifen, an antineoplastic agent, in plasma. Clin Chem 24: 1518–1524.

    PubMed  CAS  Google Scholar 

  14. Peters R. (1981): Translational diffusion in the plasma membrane of single cells as studied by fluorescence microphotolyis. Cell Biol Intl Rep 5: 733–760.

    Article  CAS  Google Scholar 

  15. Peters R, Peters J, Tews KH, Bahr W, (1974): A microflu-orimetric study of diffusion in erythrocyte membranes Biochim Biophys Acta 367: 282–294.

    CAS  Google Scholar 

  16. Rogers D, Margerum J, Wyman G, (1957): Spectroscopic studies on dyes. IV The fluorescence spectra of thioindigo dyes. J Amer Chem Soc 79: 2464–2468.

    Google Scholar 

  17. Sharafy S, Muszkat K, (1971): Viscosity dependence of fluorescence quantum yields. J Amer Chem Soc 93: 4119–4125.

    Article  CAS  Google Scholar 

  18. Singh D, Ullman E,(1967): Photochemical transposition of ring atoms in 3,5-diarylisoxazoles. An unusual example of wavelength control in a photochemical reaction of azirines. J Amer Chem Soc 89: 6911–6916.

    Google Scholar 

  19. Uchida K, (1963): The photosensitized oxidation of leucouranine. III The kinetics of an acridine-sensitized aerated solution. Bull Chem Soc Jpn 36: 1097–1106.

    Article  CAS  Google Scholar 

  20. Ullman E, Singh B, (1966): Photochemical transposition of ring atoms in five-membered heterocycles. The photoarrangement of 3,5 diphenyl-isoxazole. J Amer Chem Soc 88: 1844–1845.

    Article  CAS  Google Scholar 

  21. Ware B, (1984): Fluorescence photobleaching recovery. Amer Lab 16 (4): 16–28.

    CAS  Google Scholar 

  22. Webb W, (1981): Luminescence measurements of macromolecular mobility. Ann NY Acad Sci 366: 300–314.

    Article  PubMed  CAS  Google Scholar 

  23. Wheelock C, (1959): The fluorescence of some coumarins. J Amer Chem Soc 81: 1348–1352.

    Article  CAS  Google Scholar 

  24. White E, Friend C, Stein R, Maskill H, (1969): A probable “trans”-cyclooctatetraene. J Amer Chem Soc 91: 523–525.

    Article  CAS  Google Scholar 

  25. Zweig A, (1973): Photochemical generation of stable fluorescent compounds (photofluorescence) Pure Appl Chem 33: 389–410.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag, Berlin Heidelberg

About this paper

Cite this paper

Krafft, G.A. et al. (1986). Fluorescence Photoactivation and Dissipation (FPD). In: Peters, R., Trendelenburg, M. (eds) Nucleocytoplasmic Transport. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71565-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71565-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71567-9

  • Online ISBN: 978-3-642-71565-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics