Fluorescence Photoactivation and Dissipation (FPD)

  • G. A. Krafft
  • R. T. Cummings
  • J. P. Dizio
  • R. H. Furukawa
  • L. J. Brvenik
  • W. R. Sutton
  • B. R. Ware


Fluorescence methods have emerged as indispensable analytical and tracer techniques for a diverse range of biochemical, biophysical and physical studies that depend upon highly sensitive measurements of physical environment. This emergence has been hastened by advances in low-level light detection and by the development of coherent, variable-wavelength, and polarized excitation sources. Moreover, the spectrum of biological and physical applications of fluorescence methods has been expanded broadly by the development and availability of fluorescent molecules with specifically tailored characteristics. The attachment of these fluorescent molecules to molecular species has become a powerful approach for investigating the structure and dynamics of complex systems.


Selenium Dioxide Measured Diffusion Coefficient Label Species Monitoring Beam Bleached Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angelides K (1981): Fluorescent and photoactivable fluorescent derivatives of tetrodotoxin to probe the sodium channel of excitable membranes. Biochemistry 20: 4107–4118.PubMedCrossRefGoogle Scholar
  2. 2.
    Axelrod D, Koppel D, Schlesinger E, Elson E, Webb W (1976): Mobility measurement by analysis of fluorescence photobleaching recovery kinetics.- Biophys J 16: 1005–1069.Google Scholar
  3. 3.
    Bellers D (1971). Photo-Fries rearrangement and related photochemical [1,8]-shifts (J=3,5,7) of carbonyl and sulfonyl groups. Advan Photochem 8: 109–159.Google Scholar
  4. 4.
    Cherry R (1979). Rotational and lateral diffusion of membrane proteins. Biochim Biophys Acta 559: 289–327.PubMedGoogle Scholar
  5. 5.
    Edidin M, Zagyanski Y, Lardner T (1976). Measurement of membrane protein lateral diffusion in single cells. Science ( Washington, D. C. ) 191: 466–468.Google Scholar
  6. 6.
    Feigl F, Feigl H, Goldstein 0, (1955). A sensitive and specific test for coumarin through photocatalysis. J Amer Chem Soc 77: 4162–4163.Google Scholar
  7. 7.
    Huffman D, Kuhn C, Zweig A (1970): Photoisomerization of 3-aroyl-2-(2-furyl) chromones. An example of quenching of a photochemical reaction by a product. J Amer Chem Soc 92: 599–605.Google Scholar
  8. 8.
    Jacobson K, Wu E, Poste G, (1976): Measurement of the translational mobility of concanavalin A in glycerol-saline solutions, and on the cell surface by fluorescence recovery after photobleaching. Biochim Biophys Acta 433: 215–222.PubMedCrossRefGoogle Scholar
  9. 9.
    Lanni F, Ware B (1982): Modulation detection of fluorescence photobleaching recovery. Rev Sci Instrum 53: 905–908.CrossRefGoogle Scholar
  10. 10.
    Lewis G, Magel T, Lipkin D (1940): The absorption and emission light by “cis-” and “trans-” stilbenes and the efficiency of photochemical isomerization, J Amer Chem Soc 62: 2973–2980.CrossRefGoogle Scholar
  11. 11.
    Lippert E, Luder W, (1962): Photochemical “cis-trans” iso-merization of “p”-dimethylaminocinamic acid nitrile. J Phys Chem 66: 2430–433.CrossRefGoogle Scholar
  12. 12.
    Mallory F, Mallory C, (1984): Photocylization of stilbenes and related molecules. Organic Reactions 30: 1–456.Google Scholar
  13. 13.
    Mendenhall D, Kobayashi H, Shih F, Sternson L, Higuchi T, Fabian C, (1978): Clinical analysis of tamoxifen, an antineoplastic agent, in plasma. Clin Chem 24: 1518–1524.PubMedGoogle Scholar
  14. 14.
    Peters R. (1981): Translational diffusion in the plasma membrane of single cells as studied by fluorescence microphotolyis. Cell Biol Intl Rep 5: 733–760.CrossRefGoogle Scholar
  15. 15.
    Peters R, Peters J, Tews KH, Bahr W, (1974): A microflu-orimetric study of diffusion in erythrocyte membranes Biochim Biophys Acta 367: 282–294.Google Scholar
  16. 16.
    Rogers D, Margerum J, Wyman G, (1957): Spectroscopic studies on dyes. IV The fluorescence spectra of thioindigo dyes. J Amer Chem Soc 79: 2464–2468.Google Scholar
  17. 17.
    Sharafy S, Muszkat K, (1971): Viscosity dependence of fluorescence quantum yields. J Amer Chem Soc 93: 4119–4125.CrossRefGoogle Scholar
  18. 18.
    Singh D, Ullman E,(1967): Photochemical transposition of ring atoms in 3,5-diarylisoxazoles. An unusual example of wavelength control in a photochemical reaction of azirines. J Amer Chem Soc 89: 6911–6916.Google Scholar
  19. 19.
    Uchida K, (1963): The photosensitized oxidation of leucouranine. III The kinetics of an acridine-sensitized aerated solution. Bull Chem Soc Jpn 36: 1097–1106.CrossRefGoogle Scholar
  20. 20.
    Ullman E, Singh B, (1966): Photochemical transposition of ring atoms in five-membered heterocycles. The photoarrangement of 3,5 diphenyl-isoxazole. J Amer Chem Soc 88: 1844–1845.CrossRefGoogle Scholar
  21. 21.
    Ware B, (1984): Fluorescence photobleaching recovery. Amer Lab 16 (4): 16–28.Google Scholar
  22. 22.
    Webb W, (1981): Luminescence measurements of macromolecular mobility. Ann NY Acad Sci 366: 300–314.PubMedCrossRefGoogle Scholar
  23. 23.
    Wheelock C, (1959): The fluorescence of some coumarins. J Amer Chem Soc 81: 1348–1352.CrossRefGoogle Scholar
  24. 24.
    White E, Friend C, Stein R, Maskill H, (1969): A probable “trans”-cyclooctatetraene. J Amer Chem Soc 91: 523–525.CrossRefGoogle Scholar
  25. 25.
    Zweig A, (1973): Photochemical generation of stable fluorescent compounds (photofluorescence) Pure Appl Chem 33: 389–410.Google Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1986

Authors and Affiliations

  • G. A. Krafft
    • 1
  • R. T. Cummings
    • 1
  • J. P. Dizio
    • 1
  • R. H. Furukawa
    • 1
  • L. J. Brvenik
    • 1
  • W. R. Sutton
    • 1
  • B. R. Ware
    • 1
  1. 1.Department of ChemistrySyracuse UniversitySyracuseUSA

Personalised recommendations