Advertisement

Induction of Clonal Monocyte/Macrophage Tumors in vivo by a Mouse c-myc Retrovirus: Evidence for Secondary Transforming Events

  • William R. Baumbach
  • E. Richard Stanley
  • Michael D. Cole
Conference paper
  • 49 Downloads
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 132)

Abstract

Activation of the c-myc proto-oncogene, in the form of DNA rearrangements that lead to constitutive expression, has been implicated in the genesis of a wide range of tumors. It is therefore of great interest to determine the influence of c-myc oncogene activation on cellular growth control, especially in primary cells. To facilitate the efficient transfer of an activated c-myc oncogene, we have developed a mouse retrovirus that contains the c-myc protein coding sequences and which can be transmitted in the presence of a Mo-MuLV helper virus or established as a helper-free stock using a retroviral packaging cell line. Infection of bone marrow cells gave rise to partially transformed mononuclear phagocytes which were entirely dependent on an exogenous supply of the monocyte specific-growth factor CSF-1 for proliferation. Infection in vivo induced monocyte/macrophage tumors with a latency period of 8–10 wks.

Keywords

Conditioned Medium Mononuclear Phagocyte Tumor Line Helper Virus Myeloid Cell Differentiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumbach, W. E., Keath, E. J., Cole, M. D. (1986) A mouse c-myc retrovirus transforms established fibroblast lines in vitro and induces monocyte/macrophage tumors in vivo, J. Virol., in press.Google Scholar
  2. Byrne, P. V., Guilbert, L. J., Stanley, E. R. (1981) Distribution of cells carrying receptors for colony-stimulating factor (CSF-1) in murine tissues. J. Cell Biol. 91: 848–853.PubMedCrossRefGoogle Scholar
  3. Curran, T., Peters, G., Van Beveren, C., Teich, N. M., Verma, I. M. (1982) FBJ murine osteosarcoma virus: identification and molecular cloning of biologically active proviral DNA. J. Virol. 44: 674–682.PubMedGoogle Scholar
  4. Dexter, T. M., Garland, J., Scott, D., Scolnick, E., Metcalf, D. (1980) Growth on factor-dependent hemopoietic precursor cell lines. J. Exp. Med. 152: 1036.Google Scholar
  5. Graf, T., Beug, H. (1978) Avian leukemia viruses: interaction with their target cells in vivo and in vitro. Biochim. Biophys. Acta 516: 269–299.PubMedGoogle Scholar
  6. Guilbert, L. J., Stanley, E. R. (1980) Specific interaction of murine colony-stimulating factor with mononuclear phagocytic cells. J. Cell Biol. 85: 153–159.PubMedCrossRefGoogle Scholar
  7. Hampe, A., Gobet, M., Scherr, C. J., Galibert, F. (1984) Nucleotide sequence of the feline retroviral oncogene v-fms shows unexpected homology with oncogenes encoding tyrosine-specific protein kinases. Proc. Natl. Acad. Sci. USA 81: 85–89.PubMedCrossRefGoogle Scholar
  8. Hayflick, J., Seeburg, P. H., Ohlsson, R., Pfeifer-Ohlsson, S., Watson, D., Papas, T., Duesberg, P. H. (1985) Nucleotide sequence of two overlapping myc-related genes in avian carcinoma virus 0K10 and their relation to the myc genes of other viruses and the cell. Proc. Natl. Acad. Sci. USA 82: 2718–2722.PubMedCrossRefGoogle Scholar
  9. Ho, M.-K., T. A. Springer. (1982) Mac-1 antigen: quantitative expression in macrophage populations and tissues, and immunofluorescent localization in spleen. J. Immunol. 128: 2281–2286.PubMedGoogle Scholar
  10. Ihle, J. N., Keller, J., Greenberger, J. S., Henderson, L., letter, R. A., Morse III, H. C. (1982) Phenotypic characterization of cell lines requiring 11-3 for growth. J. Immunol. 129: 1377.PubMedGoogle Scholar
  11. Kawasaki, E. S., Ladner, M. B., Wang, A. M., Van Arsdell, J., Warren, M. K., Coyne, M. I., Schweickart, V. L., Lee, M.-T., Wilson, K. J., Boosman, A., Stanley, E. R., Ralph, P., Mark, D. F. (1985) Molecular cloning of a complemantary DNA encoding human macrophage-specific colony stimulating factor (CSF-1). Science 230: 291–296.PubMedCrossRefGoogle Scholar
  12. Keath, E. J., Caimi, P. G., Cole, M. D. (1984) Fibroblast lines expressing activated c-myc oncogenes are tumorigenic in nude mice and syngeneic animals. Cell 39: 339–348.PubMedCrossRefGoogle Scholar
  13. Klempnauer, K. H., Gonda, T. J., Bishop, J. M. (1982) Nucleotide sequence of the retroviral leukemia gene v-myb and its cellular progenitor c-myb: the architecture of a transduced oncogene. Cell 31: 453–463.PubMedCrossRefGoogle Scholar
  14. Koren, H. S., Handwerger, B. S., Wunderlich, J. R. (1975) Identification of macrophage-like characteristics in a cultured murine tumor line. J. Immunol. 114: 894–897.PubMedGoogle Scholar
  15. Metcalf, D., Moore, M. A. S., Warne, N. L. (1969) Colony formation in vitro by myelomonocytic leukemia cells. J. Natl. Can. Inst. 43: 983–988.Google Scholar
  16. Osserman, E. F., D. F. Lawlor. (1966) Serum and urinary lysozyme (muramidase) in monocytic and monomyelocytic leukemia. J. Exp. Med. 124: 921–952.PubMedCrossRefGoogle Scholar
  17. Raschke, W. G., S. Baird, P. Ralph, I. Nakoinz. (1978) Functional macrophage cell lines transformed by Abelson leukemia virus. Cell 15: 261–267.Google Scholar
  18. Sariban, E., Mitchell, T., Kufe, D. (1985) Expression of the c-fms proto-oncogene during human monocytic differentiation. Nature 316: 64–66.PubMedCrossRefGoogle Scholar
  19. Shen-Ong, G. L. C., Keath, E. J., Piccoli, S. P., Cole, M. D. (1982) Novel myc oncogene RNA from abortive immunoglobulin-gene recombination in mouse plasacytomas. Cell 31: 443–452.PubMedCrossRefGoogle Scholar
  20. Sherr, C. J., Bettenmier, C. W., Sacca, B., Boussel, M. F., Look, A. T., Stanley, E. B. (1985) The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell 41: 665–676.PubMedCrossRefGoogle Scholar
  21. Stanley, E. R. (1979) Colony-stimulating factor (CSF) radioimmunoassay: Determination of a CSF subclass stimulating macrophage production. Proc Natl. Acad. Sci. USA 76: 2969–2993.CrossRefGoogle Scholar
  22. Stanley, E. B. (1985) The macrophage colony stimulating factor, CSF-1. In Methods in Engymology-Immunochemical Techniques, Vol. 116 ( Colwick and Kappler, eds.) Harcourt, Brace Janovich, New York. pp. 564–587.Google Scholar
  23. Tushinski, B. L., Oliver, I. T., Guilbert, L. J., Tynan, P. W., Warner, J. B., Stanley, E. B. (1982) Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy. Cell 28: 71–81.PubMedCrossRefGoogle Scholar
  24. Vennstrom, B., Kahn, P., Adkins, B., Enrietto, P., Hayman, M. J., Graf, T., Luciw, P. (1984) Transformation of mammalian fibroblasts and macrophages in vitro by a murine retrovirus encoding an avian v-myc oncogene. EMBO J. 3: 3223–3229.PubMedGoogle Scholar
  25. Watson, D. K., Beddy, E. P., Duesberg, P. H., Papas, T. S. (1983) Nucleotide sequence analysis of the chicken c-myc gene reveals homologous and unique coding regions by comparison with the transfroming gene of avian myelocytomatosis virus MC29. Proc. Natl. Acad. Sci. USA 80: 2146–2150.PubMedCrossRefGoogle Scholar
  26. Yam, L. T., C. Y. Li, W. H. Crosby. (1971) Cytochemical identification of monocytes and granulocytes. Am. J. Clin. Pathol. 55: 283–297.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1986

Authors and Affiliations

  • William R. Baumbach
    • 1
  • E. Richard Stanley
    • 2
    • 3
  • Michael D. Cole
    • 1
  1. 1.Department of Molecular BiologyPrinceton UniversityPrincetonUSA
  2. 2.Department of Microbiology and ImmunologyAlbert Einstein College of MedicineNew YorkUSA
  3. 3.Department of Cell BiologyAlbert Einstein College of MedicineNew YorkUSA

Personalised recommendations