Skip to main content

Epstein-Barr Virus Induced Differentiation of Early B-Lineage Cells

  • Conference paper
Book cover Mechanisms in B-Cell Neoplasia

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 132))

Abstract

During their differentiation, members of a clone of B-lineage cells undergo a series of irreversible gene rearrangements involving the immunoglobulin (Ig) gene loci. The rearrangement process, though itself error-prone, proceeds in a programmed, normally well-regulated fashion (reviewed in Tonegawa 1983; Alt et al. 1984). It occurs first at the heavy chain locus, then at a light chain locus and, if successful, ultimately generates an antigen-specific IgM molecule. Subsequently some members of the clone can switch heavy chain isotypes, again by a process involving DNA deletion and Ig gene rearrangement (reviewed in Honjo 1983; Burrows and Cooper 1984). Much of the information concerning these events came initially from studies in the mouse of transformed cell lines thought to represent the various stages of differentiation along the B-lineage. We have been using Epstein-Barr virus (EBV) to examine the genetic events occurring in the early precursors of human B cells. This technique has allowed us to rescue cells with unusual Ig gene and Ig protein phenotypes, and has provided new data concerning the expression of J chain as a function of B cell maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alt FW, Yancopoulos GD, Blackwell TK, Wood C, Thomas E., Boss M., Coffman R., Rosenberg N., Tonegawa S., Baltimore D (1984) Ordered rearrangement of immunoglobulin heavy chain variable region segments. EMBO J 3: 1209–1219

    PubMed  CAS  Google Scholar 

  • Burrows PD, Cooper MD (1984) The immunoglobulin heavy chain class switch. Mol Cell Biochem 63: 97–111.

    Article  PubMed  CAS  Google Scholar 

  • Chan MA, Stein LD, Dosh HM, Sigal NH (1986) Heterogeneity of EBV-transformable human B lymphocyte populations. J Immunol 136: 106–112

    PubMed  CAS  Google Scholar 

  • Ernberg I, Falk K, Hansson M (1986) Progenitor and pre-B lymphocytes transformed by Epstein-Barr virus. Int J Cancer (in press)

    Google Scholar 

  • Fingeroth JD, Weis JJ, Tedder TF, Strominger JL, Biro PA, Fearon DT (1984) Epstein Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci USA 81: 4510–4514

    Article  PubMed  CAS  Google Scholar 

  • Frade R, Barel M, Ehlin-Henriksson B, Klein G (1985) gp 140, the C3d receptor of human B lymphocytes, is also the Epstein-Barr virus receptor. Proc Natl Acad Sci USA 82: 1490–1493

    Google Scholar 

  • Fu SM, Hurley JN, McCune JM, Kunkel HG, Good RA (1980) Pre-B cells and other possible precursor lymphoid cell lines derived from patients with X-linked agammaglobulinemia. J Exp Med 152: 1519–1526

    Article  PubMed  CAS  Google Scholar 

  • Hajdu I, Moldoveanu Z, Cooper MD, Mestecky J (1983) Ultrastructural studies of human lymphoid cells: p and J chain expression as a function of B cell differentiation. J Exp Med 158: 1993–2006

    CAS  Google Scholar 

  • Hansson M, Falk K, Ernberg I (1983) Epstein-Barr virus transformation of human pre-B cells. J Exp Med 158: 616–622

    Article  PubMed  CAS  Google Scholar 

  • Henle W, Diehl V, Kohn G, Hausen HZ, Henle G (1967) Herpes types virus and chromosome marker in normal leukocytes after growth with irradiated Burkitt’s cells. Science 157: 1064–1065

    Article  PubMed  CAS  Google Scholar 

  • Honjo T (1983) Immunoglobulin genes. Ann Rev Immunol 1: 499–528

    Article  CAS  Google Scholar 

  • Katamine S, Otsu M, Tada K, Tsuchiya S, Sato T, Ishida N, Honjo T, Ono Y (1984) Epstein-Barr virus transforms precursor B cells even before immunoglobulin gene rearrangements. Nature 309: 369–372

    Article  PubMed  CAS  Google Scholar 

  • Koshland ME (1974) Structure and function of the J chain. Adv Immunol 20: 41–69

    Article  Google Scholar 

  • Koshland MD (1983) Presidential address: Molecular aspects of B cell differentiation. J Immunol 131:i-ix

    Google Scholar 

  • Martinez-Maza O, Britton S (1983) Frequencies of the separate human B cell subsets activatable to Ig secretion by Epstein-Barr virus and pokeweed mitogen. J Exp Med 157: 1808–1814

    Article  PubMed  CAS  Google Scholar 

  • Matsuuchi L, Cann GM, Koshland ME (1986) Immunoglobulin J chain gene from the mouse. Proc Natl Acad Sci USA 83: 456–460

    Article  CAS  Google Scholar 

  • Max E, Korsmeyer SJ (1985) Human J chain gene: Structure and expression in B lymphoid cells. J Exp Med 161: 832–849

    Google Scholar 

  • McCune JM, Fu SM, Kunkel HG (1981) J chain biosynthesis in pre-B cells and other possible precursor B cells. J Exp Med 154: 138–145

    CAS  Google Scholar 

  • Mestecky J, Preud’homme JL, Crago SS, Mihaesco E, Prchal JT, Okos AJ (1980) Presence of J chain in human lymphoid cells. Clin Exp Immunol 39: 371–385

    CAS  Google Scholar 

  • Pearl ER, Vogler LB, Okos AJ, Crist WM, Lawton AR, Cooper MD (1978) B lymphocyte precursors in human bone marrow: An analysis of normal individuals and patients with antibody-deficiency states. J Immunol 120: 1169–1175

    Google Scholar 

  • Tedder TF, Crain MJ, Kubagawa H, Clement LT, Cooper MD (1985) Evaluation of lymphocyte differentiation in primary and secondary immunodeficiency diseases. J Immunol 135: 1786–1791

    PubMed  CAS  Google Scholar 

  • Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302: 575–581

    Article  PubMed  CAS  Google Scholar 

  • Tosato G, Blaese RM, Yarchoan R (1985) Relationship between immunoglobulin production and immortalization by Epstein Barr virus. J Immunol 135: 959–964

    PubMed  CAS  Google Scholar 

  • Yarchoan R, Tosato G, Blaese RM, Simon RM, Nelson DL (1983) Limiting dilution analysis of Epstein-Barr virus-induced immunoglobulin production by human B cells. J Exp Med 157: 1–14

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Kubagawa, H., Burrows, P.D., Grossi, C.E., Cooper, M.D. (1986). Epstein-Barr Virus Induced Differentiation of Early B-Lineage Cells. In: Melchers, F., Potter, M. (eds) Mechanisms in B-Cell Neoplasia. Current Topics in Microbiology and Immunology, vol 132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71562-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71562-4_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71564-8

  • Online ISBN: 978-3-642-71562-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics