Possible Role of Immunoglobulin Recombination Sequences in the Genesis of Variant t(2;8) Translocations of Burkitt Lymphoma

  • M. Lipp
  • P. Hartl
Conference paper
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 132)


Various chromosomal abberations have been regularly found in cytogenetic investigations and can be associated with specific human neoplasia (Rowley 1980; Yunis 1983). However, few of them are accessible to molecular analysis providing the necessary information for understanding the mechanisms and functional consequences of such drastic changes in the otherwise higly conserved structural order of genetic material. Some of the best analyzed examples are human Burkitt lymphomas and murine plasmacytomas carrying consistently a reciprocal translocation (t(8,14), t(2;8), and t(8;22) in man, and t(12;15) and t(6;15) in mice) which always involves one of the immunoglobulin heavy or light chain genes and the locus of the c-myc oncogene on human chromosome 8 and on mouse chromosome 15 (for review see Klein 1983, 1985)). Although a lot of new information has accumulated recently, the available data do not allow one to propose an unifying hypothesis explaining the mechanisms responsible for the genesis of translocations and for the activation of the c-myc gene.


Burkitt Lymphoma Kappa Light Chain BamHI Fragment Recombination Signal Sequence Chromosomal Breakpoint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chen EJ, Seeburg PH (1985) Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4: 165–170PubMedCrossRefGoogle Scholar
  2. Deininger PL, Jolly DJ, Rubin CM, Friedmann T, Schmid CW (1981) Base sequence studies of 300 nucleotide renatured repeated human DNA clones. J Mol Biol 151: 17–33PubMedCrossRefGoogle Scholar
  3. Emanuel BS, Selden JR, Chaganti RSK, Jhanwar S, Nowell PC, Croce CM (1 984) The 2p breakpoint of a 2;8 translocation in Burkitt lymphoma interrupts the VV. locus. Proc Natl Acad Sci USA 81: 2444–2446Google Scholar
  4. Erikson J, Nishikura K, Ar-Rushdi A, Finan J, Emanuel B, Lenoir G, Nowell PC, Croce CM (1983) Translocation of an immunoglobulin kappa-locus to a region 3′of an unrearranged c-myc oncogene enhances c-myc transcription. Proc Natl Acad Sci USA 80: 7581–7585PubMedCrossRefGoogle Scholar
  5. Frischauf A-M, Lehrach H, Poustka A, Murray N (1983) Lamda replacement vectors carrying polylinker sequences. J Mol Biol 170: 827–842PubMedCrossRefGoogle Scholar
  6. Hieter PA, Maizel JV, Leder P (1982) Evolution of human immuno-globulin kappa J region genes. J Biol Chem 257: 1516–1522Google Scholar
  7. Hochtl J, Zachau HG (1983) A novel type of aberrant recombination in Ig genes and its implications for V-J joining mechanism. Nature 302: 260–263PubMedCrossRefGoogle Scholar
  8. Hood L, Kronenberg M, Hunkapiller T (1985) T cell antigen receptor and the immunoglobulin supergene family. Cell 40: 225–229PubMedCrossRefGoogle Scholar
  9. Hope TJ, Aguilera RJ, Minie ME, Sakano H (1986) Endonucleolytic activity that cleaves immunoglobulin recombination sequences. Science 231: 1141–1145PubMedCrossRefGoogle Scholar
  10. Kelley DE, Wiedemann LM, Pittet A-C, Strauss S, Nelson KJ, Davis J, Van Ness B, Perry RP (1985) Nonproductive kappa immunoglobulin genes: Recombinational abnormalities and other lesions affecting transcription, RNA processing, turnover, and translation. Mol Cell Biol 5: 1660–1675Google Scholar
  11. Klein G (1983) Specific chromosomal translocations and the genesis of B-cell-derived tumors in mice and men. Cell 32: 311–315PubMedCrossRefGoogle Scholar
  12. Klein G, Klein E (1985) Evolution of tumours and the impact of molecular oncology. Nature 315: 190–195PubMedCrossRefGoogle Scholar
  13. Mark-Vendel E, Philip T, Ladjaj Y, Aboulola M, Lenoir GM (1983) Chromosomal translocation in algerian Burkitt’s lymphoma. The Lancet ii: 788Google Scholar
  14. Lewis S, Gifford A, Baltimore D (1984) Joining of V-kappa to J-kappa gene segments in a retroviral vector introduced into lymphoid cells. Nature 308: 425–428PubMedCrossRefGoogle Scholar
  15. Rappold GA, Hameister H, Cremer T, Adolph S, Henglein B, Freese U-K, Lenoir GM, Bornkamm GW (1984) c-myc and immunoglobulin kappa light chain constant genes are on the 8q+ chromosome of three Burkitt lymphoma lines with t(2;8) translocation. EMBO J 3: 2951–2955Google Scholar
  16. Roth DB, Porter TN, Wilson JH (1985) Mechanisms of nonhomologous recombination in mammalian cells. Mol Cell Biol 5: 2599–2607PubMedGoogle Scholar
  17. Rowley JD (1980) Chromosome abnormalities in Cancer. Cancer Genetics and Cytogenetics 2: 175–198CrossRefGoogle Scholar
  18. Sanger F, Micklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467PubMedCrossRefGoogle Scholar
  19. Seidman JG, Leder P (1980) A mutant immunoglobulin light chains is formed by aberrant DNA and RNA splicing events. Nature 286: 779–783PubMedCrossRefGoogle Scholar
  20. Szostak JW, Orr-Weaver TL, Rothstein RJ (1983) The double-strand-break repair model for recombination. Cell 33: 25–35PubMedCrossRefGoogle Scholar
  21. Taub R, Kelly K, Battey J, Latt S, Lenoir GM, Tantravahi U, Tu Z, Leder P (1984) A novel alteration in the structure of an activated c-myc gene in a variant t(2;8) Burkitt lymphoma. Cell 37: 511–520PubMedCrossRefGoogle Scholar
  22. Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302: 575–581PubMedCrossRefGoogle Scholar
  23. Tsujimoto Y, Jaffe E, Cossman J, Gorham J, Nowell PC, Croce CM (1985) Clustering of breakpoints on chromosome 11 in human B-cell neoplasms with the t(11;14) chromosome translocation. Nature 315: 340–343PubMedCrossRefGoogle Scholar
  24. Yunis JJ (1983) The chromosomal basis of human neoplasia. Science 221: 227–236PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1986

Authors and Affiliations

  • M. Lipp
    • 1
  • P. Hartl
    • 1
  1. 1.Institut für BiochemieLudwigs-Maximilians-UniversitätMünchen 5Germany

Personalised recommendations