Skip to main content

Neuropeptides in Central Movement Disorders of Man

  • Conference paper
Clinical Aspects of Sensory Motor Integration

Part of the book series: Advances in Applied Neurological Sciences ((NEUROLOGICAL,volume 4))

Abstract

Of the more than 35 neuropeptides presently known, a major part is found in brain areas involved in the control of movement. The neural circuits and the neuroactive substances of basal ganglia of the rat have been surveyed in this volume [37]. In the cerebral cortex of rat and other mammals small neurons contain somatostatin, neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), cholecystokinin (CCK), enkephalin [9, 19, 21, 26, 30, 31]. In some cortical VIP neurons a coexistence with choline acetyltransferase, the biosynthetic enzyme of acetylcholine, has been shown [19]. Cortical neurons projecting to the striatum contain glutamate [34]. In the striatum the majority of neurons is GABA-ergic; most perikarya are medium-size spiny striato-fugal projection neurons, and a minority are medium- to large-size cells representing local circuit neurons. Few striatal neurons are cholinergic [45]. Somatostatin is contained in medium-size as-piny interneurons [17]. Met-, leuenkephalin, substance P [40] and dynorphin [49] are contained in striatal neurons projecting to the pallidum. A coexistence of met-, leuenkephalin and substance P has been found in GABA-ergic striatal neurons [2, 4]. In the pallidum the majority of neurons is GABA-ergic, most of them being projection neurons. GABA-ergic projection neurons of the striatum terminate in the substantia nigra at dopaminergic neurons [29]; some of these dopamine neurons contain CCK [30]. These neurons reciprocally project to GABA-ergic and cholinergic neurons in the striatum. GABA-ergic pallidal neurons project further to thalamus, tectum, subthalamic nucleus and possibly to the substantia nigra pars compacta Unknown are the transmitters of the neurons projecting from the thalamus back to the cortex, and from the subthalamic nucleus back to the thalamus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agid Y, Javoy-Agid F (1985) Peptides and Parkinson’s disease. Trends Neurosci 8: 30–35

    Article  CAS  Google Scholar 

  2. Afsharpour S, Penny GR, Kitai ST (1984) Glutamic acid decarboxylase, leucine enkephalin, and substance P immunoreactive neurons in the neostriatum of the rat and cat. Soc Neurosci Abstr 10: 702

    Google Scholar 

  3. Aronin N, Cooper PE, Lorenz LJ, Bird ED, Sagar S, Leeman SE, Martin JB (1983) Somatostatin is increased in the basal ganglia in Huntington’s disease. Ann Neurol 13: 519–526

    Article  PubMed  CAS  Google Scholar 

  4. Aronin N, DiFiglia M, Graveland GA, Schwartz WJ, Wu J-Y (1984) Localization of immunoreactive enkephalins in GABA-synthesizing neurons of the rat neostriatum. Brain Res 300: 376–380

    Article  PubMed  CAS  Google Scholar 

  5. Beal MF, Crowdon JH, Mazurek MF, Martin JB (1986) CSF somatostatin-like immunoreactivity in dementia. Neurology 36: 294–297

    PubMed  CAS  Google Scholar 

  6. Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321: 168–171

    Article  PubMed  CAS  Google Scholar 

  7. Beal MF, Mazurek MF, Crowdon JH, Black P, Martin JB (1985) CSF somatostatin-like immunoreactivity in neurologic disease J Neurol [Suppl] 232: 176

    Google Scholar 

  8. Beal MF, Bird ED, Langlais PJ, Martin JB (1984) Somatostatin is increased in the nucleus accumbens in Huntington’s disease. Neurology 34: 663–666

    PubMed  CAS  Google Scholar 

  9. Chan-Palay V, Allen YS, Lang W, Haesler U, Polak JM (1985) I. Cytology and distribution in normal human cerebral cortex of neurons immunoreactive with antisera against neuropeptide Y. J Comp Neurol 238: 382–389

    Article  PubMed  CAS  Google Scholar 

  10. Chronwall BM, Chase TN, O’Donohue TL (1984) Coexistence of neuropeptide Y and somatostatin in rat and human cortical and rat hypothalamic neurons. Neurosci Lett 32: 213–217

    Article  Google Scholar 

  11. Cooper P, Aronin N, Bird E, Leeman SE, Martin JB (1981) Increased somatostatin in the basal ganglia of Huntington’s disease. Neurology 31: 64

    Google Scholar 

  12. Cramer H, Kohler VJ, Oepen G, Schomburg G, Schröter E (1981) Huntington’s chorea — measurements of somatostatin, substance P, and cyclic nucleotides in the cerebrospinal fluid. J Neurol 225: 183–187

    Article  PubMed  CAS  Google Scholar 

  13. Cramer H, Schaudt D, Rissler K, Strubel D, Warter J-M, Kuntzmann F (1985) Somatostatin-like immunoreactivity and substance P-like immunoreactivity in the CSF of patients with senile dementia of Alzheimer type, multi-infarct syndrome and communicating hydrocephalus. J Neurol 232: 346–351

    Article  PubMed  CAS  Google Scholar 

  14. Davies P, Katzman R, Terry RD (1980) Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer’s disease and Alzheimer’s senile dementia. Nature 288: 279–280

    Article  PubMed  CAS  Google Scholar 

  15. Dawbarn D, de Quidt ME, Emson PC (1985) Survival of basal ganglia neuropeptide Y/ somatostatin neurones in Huntington’s disease. Brain Res 340: 252–260

    Google Scholar 

  16. Delfs JR (1985) Somatostatin and Alzheimer’s disease: possible pathophysiological associations. In: Senile dementia of the Alzheimer type. Alan R. Liss Inc., pp 243–261

    Google Scholar 

  17. DiFiglia M, Aronin N (1982) Ultrastructural features of immunoreactive somatostatin neurons in the rat caudate nucleus. J Neurosci 2: 1267–1274

    PubMed  CAS  Google Scholar 

  18. Dupont E, Christensen SE, Hansen AP, de Fine Olivarius B, Orskov H (1982) Low cerebrospinal fluid somatostatin in Parkinson’s disease. Neurology 32: 312–314

    CAS  Google Scholar 

  19. Eckenstein F, Baughman RW (1984) Two types of cholinergic innervation in cortex, one colocalized with vasoactive intestinal polypeptide. Nature 309: 153–155

    Article  PubMed  CAS  Google Scholar 

  20. Emson PC, Dawbarn D, de Quidt ME CNS peptides in Huntington’s chorea (this volume)

    Google Scholar 

  21. Emson PC, Fahrenkrug J, Spokes EGS (1979) Vasoactive intestinal polypeptide (VIP): distribution in normal human brain and Huntington’s disease. Brain Res 173: 174–178

    Article  PubMed  CAS  Google Scholar 

  22. Epelbaum J, Ruberg M, Moyse E, Javoy-Agid F, Dubois B, Agid Y (1983) Somatostatin and dementia in Parkinson’s disease. Brain Res 278: 376–379

    Article  PubMed  CAS  Google Scholar 

  23. Fahrenkrug J, Schaffalitzky de Muckadell OB, Fahrenkrug A (1977) Vasoactive intestinal polypeptide (VIP) in human cerebropsinal fluid. Brain Res 124: 581–584

    Article  PubMed  CAS  Google Scholar 

  24. Ferrante RJ, Kowall NW, Beal MF, Richardson EP Jr, Bird ED, Martin JB (1985) Selective sparing of a class of striatal neurons in Huntington’s disease. Science 230: 561–563

    Article  PubMed  CAS  Google Scholar 

  25. Francis PT, Bowen DM, Neary D, Palo J, Wikstrom J, Olney (1984) Somatostatin-like immunoreactivity in lumbar cerebrospinal fluid from neurohistologically examined demented patients. Neurobiol Aging 5: 183–186

    CAS  Google Scholar 

  26. Geola FL, Yamada T, Warwick RJ, Tourtelotte WW, Hershman JM (1981) Regional distribution of somatostatin-like immunoreactivity in the human brain. Brain Res 229: 35–42

    Article  PubMed  CAS  Google Scholar 

  27. Hansen AB, de Fine Olivarius SE, Pederson E, Sorensen K, Dupont E, Ingenslee I, Christensen SE, Orskov H (1984) Cerebrospinal fluid SLI: on its origin and pathology in neurological disease. In: Rosenthal J (ed) Proceed 2nd Symp Somatostatin, Athens, University Press Tübingen

    Google Scholar 

  28. Hökfelt T, Johansson O, Goldstein M (1984) Chemical anatomy of the brain. Science 225: 1326–1334

    Article  PubMed  Google Scholar 

  29. Hökfelt T, Johansson O, Fuxe K, Goldstein M, Park D (1976) Immunohistochemical studies on the localization and distribution of monoamine neuron systems in the rat brain. I. Tyrosine hydroxylase in the mes-and diencephalon. Med Biol 54: 427–453

    Google Scholar 

  30. Hökfelt T, Skirboll L, Rehfeld JF, Goldstein M, Markey K, Daun O (1980) A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokininlike peptide: evidence from immunohistochemistry combined with retrograde tracing. Neurosci 5: 2093–2194

    Article  Google Scholar 

  31. Khachaturian H, Lewis ME, Schäfer MKH, Watson SJ (1985) Anatomy of the opioid systems. Trends Neurosci 8: 111–119

    Article  CAS  Google Scholar 

  32. Kohler J, Schröter E, Cramer H (1982) Somatostatin-like immunoreactivity in the cerebrospinal fluid of neurological patients. Arch Psychiatr Nervenkr 231: 503–508

    Article  PubMed  CAS  Google Scholar 

  33. Lowry HO, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin reagent. J Biol Chem 53: 265–275

    Google Scholar 

  34. Madl JE, Larson AA, Beitz AJ (1986) Monoclonal antibody specific for carbodiimide-fixed glutamate: immunocytochemical localization in the rat CNS. J Histochem Cytochem 34: 317–326

    Article  PubMed  CAS  Google Scholar 

  35. Martin JB (1984) Huntington’s disease: new approaches to an old problem. Neurology 34: 1049–1072

    Google Scholar 

  36. Nemeroff CB, Youngblood WW, Manberg PJ, Prange AJ (1983) Regional brain concentrations of neuropeptides in Huntington’s chorea and schizophrenia. Science 221: 972–975

    Article  PubMed  CAS  Google Scholar 

  37. Oertel WH, Struppler A Immunohistochemical studies on neurotransmitters in rat basal ganglia (this volume)

    Google Scholar 

  38. Oram JJ, Edwardson J, Millard PH (1982) Investigation of cerebrospinal fluid neuropeptides in idiopathic senile dementia. Gerontology 27: 216–223

    Article  Google Scholar 

  39. Patel YC, Rao K, Reichlin S (1977) Somatostatin in human cerebrospinal fluid. N Engl J Med 296: 529–533

    Article  PubMed  CAS  Google Scholar 

  40. Penney JB Jr, Young AB (1982) Speculation on the functional anatomy of basal ganglia. Ann Rev Neurosci 6: 73–94

    Article  Google Scholar 

  41. Rinne UK, Rinne JO, Rinne JK (1984) Brain neurotransmitters and neuropeptides in Parkinson’s disease. Acta Physiol Pharmacol Latinoam 34: 287–299

    PubMed  CAS  Google Scholar 

  42. Rossor MN, Emson PC, Mountjoy CQ, Roth M, Iversen LL (1980) Reduced amounts of immunoreactive somatostatin in temporal cortex in senile dementia of Alzheimer type. Neurosci Lett 20: 373–377

    Article  PubMed  CAS  Google Scholar 

  43. Serby M, Richardson SB, Twente S, Siekierski J, Corwin J, Rotrosen J (1984) CSF somatostatin in Alzheimer’s disease. Neurobiol Aging 5: 187–189

    Article  PubMed  CAS  Google Scholar 

  44. Sharpless NS, Thal LJ, Perlow MJ et al. (1984) Vasoactive intestinal peptide in cerebrospinal fluid. Peptides (Fayetteville) 5: 429–433

    Article  CAS  Google Scholar 

  45. Sofroniew MV, Eckenstein F, Thoenen H, Cuello AC (1982) Topography of choline acetyltransferase-containing neurons in the forebrain of the rat. Neurosci Lett 33: 7–12

    Article  PubMed  CAS  Google Scholar 

  46. Soininen HS, Jolkonen JT, Reinikainen KJ, Halonen TO, Riekkinen PJ (1984) Reduced cholinesterase activity and somatostatin-like immunoreactivity in the cerebrospinal fluid of patients with dementia of the Alzheimer type. J Neurol Sci 63: 167–172

    Article  PubMed  CAS  Google Scholar 

  47. Sternberger LA (1979) Immunocytochemistry, 2nd edn. Wiley, New York Chichester

    Google Scholar 

  48. Unger J, Weindl A, Pitzl H, Schrell U, Lange W (1984) Antiserumproduktion gegen Somatostatin (ST): Titerkontrolle mit ELISA und Radioimmunoassay zur Bestimmung der quantitativen Verteilung von ST im Rattengehirn. Verh Anat Ges 78: 515–517

    CAS  Google Scholar 

  49. Vincent SR, Hökfelt T, Christensson I, Terenius L (1982) Immunohistochemical evidence for a dynorphin immunoreactive striatonigral pathway. Eur J Pharmacol 85: 251–252

    Article  PubMed  CAS  Google Scholar 

  50. Vincent SR, Johansson O, Hökfelt T, Skirboll L, Elde RP, Terenius L, Kimmel J, Goldstein M (1983) NADPH-diaphorase: a selective histochemical marker for striatal neurons containing both somatostatin and avian pancreatic polypeptide ( APP)-like immunoreactivities. J Comp Neurol 217: 252–263

    Article  PubMed  CAS  Google Scholar 

  51. Weindl A, Unger J, Gnahn H, Lange H, Lange W, Struppler A (1985) Neuropeptide bei degenerativen ZNS Erkrankungen — Radioimmunologischer Nachweis von Somatostatin und vasoaktivem intestinalem Polypeptid im Liquor cerebrospinalis. In: Gänshirt H, Berlit P, Haack G (eds) Kardiovaskuläre Erkrankungen und Nervensystem. Neurotoxikologie. Probleme des Hirntodes. Springer, Berlin Heidelberg New York Sydney Tokyo (Verh Dtsch Ges Neurol, vol 3, pp 935–940)

    Google Scholar 

  52. Wikkelse C, Fahrenkrug J, Blomstrand C, Johansson BB (1985) Dementia of different etiologies: vasoactive intestinal polypeptide in CSF. Neurology 35: 592–595

    Google Scholar 

  53. Wood PL, Etienne P, Lal S, Gauthier S, Cajal S, Nair NPV (1982) Reduced lumbar CSF somatostatin levels in Alzheimer’s disease. Life Sci 31: 2073–2079

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weindl, A., Unger, J., Schwartzberg, M., Triepel, J., Lange, W., Struppler, A. (1987). Neuropeptides in Central Movement Disorders of Man. In: Struppler, A., Weindl, A. (eds) Clinical Aspects of Sensory Motor Integration. Advances in Applied Neurological Sciences, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71540-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71540-2_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71542-6

  • Online ISBN: 978-3-642-71540-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics