Skip to main content

Electromagnetic Field Interactions in the Brain

  • Conference paper
Dynamics of Sensory and Cognitive Processing by the Brain

Part of the book series: Springer Series in Brain Dynamics ((SSBD,volume 1))

Abstract

For more than 100 years, structural and functional substrates of the organization of brain tissue have been based on considerations of connectivity as described in Waldeyer’s neuronal doctrine and Sherrington’s research on integrative action in the nervous system. The neuronal doctrine emphasizes signaling processes based on synaptic transmission. This in turn has focused attention on signal coding through nerve action potentials, conveyed along axonal paths from one cell to another.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adey WR (1966) Intrinsic organization of cerebral tissue in alerting, orienting and discriminative responses. In: Quarton GC, Melnechuk T, Schmitt FO (eds) The neurosciences: a study program. Rockefeller University Press, New York, pp 615–633

    Google Scholar 

  • Adey WR (1981a) Tissue interactions with nonionizing electromagnetic fields. Physiol Rev 61: 435–514

    CAS  Google Scholar 

  • Adey WR (1981b) Ionic nonequilibrium phenomena in tissue interactions with nonionizing electromagnetic fields. Am Chem Soc Symp Ser 157: 271–297

    CAS  Google Scholar 

  • Adey WR (1983) Molecular aspects of cell membranes as substrates for interaction with electromagnetic fields. In: Basar E, Flohr H, Haken H, Mandell AJ (eds) Synergetics of the brain. Springer, Berlin Heidelberg New York, pp 201–211

    Google Scholar 

  • Adey WR (1984) Nonlinear, nonequilibrium aspects of electromagnetic field interactions at cell membranes. In: Adey WR, Lawrence AF (eds) Nonlinear electrodynamics in biological systems. Plenum, New York, pp 3–22

    Google Scholar 

  • Adey WR, Lawrence AF (eds) (1984) Nonlinear electrodynamics in biological systems. Plenum, New York

    Google Scholar 

  • Adey WR, Kado RT, Mcllwain JT, Walter DO (1966) The role of neuronal elements in regional im- pedance changes in alerting, orienting and discriminative responses. Exp Neurol 15: 490–510

    Article  PubMed  CAS  Google Scholar 

  • Adey WR, Bawin SM, Lawrence AF (1982) Effects of weak amplitude-modulated microwave fields on calcium efflux from awake cat cerebral cortex. Bioelectromagnetics 3: 295–309

    Article  PubMed  CAS  Google Scholar 

  • Bassett CAL (1982) Pulsing electromagnetic fields: a new method to modify cell behavior in calcified and noncalcified tissues. Calcif Tissue Int 34: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Bawin SM, Adey WR (1976) Sensitivity of calcium binding in cerebral tissue to weak environmental oscillating low frequency electric fields. Proc Natl Acad Sci USA 73: 1999–2003

    Article  PubMed  CAS  Google Scholar 

  • Bawin SM, Gavalas-Medici RJ, Adey WR (1973) Effects of modulated VHF fields on specific brain rhythms in cats. Brain Res 58: 365–384

    Article  PubMed  CAS  Google Scholar 

  • Bawin SM, Kaczmarek LK, Adey WR (1975) Effects of modulated VHF fields on the central nervous system. Ann NY Acad Sci 247: 74–80

    Article  PubMed  CAS  Google Scholar 

  • Bawin SM, Adey WR, Sabbot IM (1978a) Ionic factors in release of 45Ca2+ from chicken cerebral tissue by electromagnetic fields. Proc Natl Acad Sci USA 75: 6314–6318

    Article  CAS  Google Scholar 

  • Bawin SM, Sheppard AR, Adey WR (1978b) Possible mechanisms of weak electromagnetic field coupling in brain tissue. Bioelectrochem Bioenergetics 5: 76–76

    Article  Google Scholar 

  • Blackman CF, Elder JA, Weil CM, Benane SG, Eichinger DC, House DE (1979) Induction of calcium ion efflux from brain tissue by radio frequency radiation; effects of modulation frequency and field strength. Radio Sci 14: 93–98

    Article  CAS  Google Scholar 

  • Blackman CF, Benane SG, Rabinowitz JR, House DE, Joines WT (1985) A role for the magnetic field in radiation-induced efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics 6 (4)

    Google Scholar 

  • Byus CV, Lundak RL, Fletcher RM, Adey WR (1984) Alterations in protein kinase activity following exposure of cultured lymphocytes to modulated microwave fields. Bioelectromagnetics 5: 34–351

    Article  Google Scholar 

  • Byus CV, Kartun K, Peiper S, Adey WR (1986) Ornithine decarboxylase activity in liver cells is enhanced by low-level amplitude-modulated microwave fields. (To be published )

    Google Scholar 

  • Cain CD, Luben RA, Donato NJ, Byus CV, Adey WR (1985) Pulsed electromagnetic field effects on responses to parathyroid hormone in primary bone cells (Abstr). Annual Meeting of the Bioelectromagnetics Society, San Francisco, p 8

    Google Scholar 

  • Creutzfeldt OD, Watanabe S, Lux HD (1966) Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and epicortical stimulation. Electroencephalogr Clin Neurophysiol 20: 1–18

    Article  PubMed  CAS  Google Scholar 

  • Davydov AS (1979) Solitons in physical systems. Phys Scripta 20: 387–394

    Article  CAS  Google Scholar 

  • DeRiemer SA, Strong JA, Albert KA, Greengard P, Kaczmarek LK (1985) Enhancement of calcium current in aplysia neurons by phorbol ester and kinase C. Nature 313: 313–316

    Article  PubMed  CAS  Google Scholar 

  • Dutta SK, Subramoniam A, Ghosh B, Parshad R (1984) Microwave radiation-induced calcium ion efflux from human neuroblastoma cells in culture. Bioelectromagnetics 5: 71–78

    Article  PubMed  CAS  Google Scholar 

  • Elul R (1962) Dipoles of spontaneous activity in the cerebral cortex. Exp Neurol 6: 285–289

    Article  Google Scholar 

  • Elul R (1972) The genesis of the EEG. Int Rev Neurobiol 15: 227–272

    Article  Google Scholar 

  • Fitzsimmons R, Farley J, Adey R, Baylink D (1984) Bone formation is increased after short term exposure to very low amplitude electric fields in citro (Abstr) J Cell Biol 99: 422a

    Google Scholar 

  • Fröhlich H (1975) The extraordinary dielectric properties of biological materials and the properties of enzymes. Proc Natl Acad Sci USA 72: 4211–4215

    Article  PubMed  Google Scholar 

  • Fujita Y, Sato T (1964) Intracellular records from hippocampal pyramidal cells in rabbit during theta rhythm activity. J Neurophysiol 27: 1012–1025

    PubMed  CAS  Google Scholar 

  • Gavalas RJ, Walter DO, Hammer J, Adey WR (1970) Effect of low-level, low-frequency electric fields on behavior in Macaca nemestrina. Brain Res 18: 491–501

    Article  PubMed  CAS  Google Scholar 

  • Gavalas-Medici R, Day-Magdaleno SR (1976) Extremely low frequency weak electric fields affect schedule-controlled behavior in monkeys. Nature 261: 256–258

    Article  PubMed  CAS  Google Scholar 

  • Grodsky IT (1976) Neuronal membrane: a physical synthesis. Math Biosci 28: 191–219

    Article  CAS  Google Scholar 

  • Haken H (1983) Synposis and introduction. In: Basar E, Flohr H, Haken H, Mandell AJ (eds) Synergetics of the brain. Springer, Berlin Heidelberg NewYork, pp 3–25

    Google Scholar 

  • Jasper H, Stefanis C (1965) Intracellular oscillatory rhythms in pyramidal tract neurons in the cat. Electroencephalogr Clin Neurophysiol 18: 541–553

    Article  PubMed  CAS  Google Scholar 

  • Jefferys JGR, Haas HL (1982) Synchronized bursting of CAl hippocampal pyramidal cells in the absence of synaptic transmission. Nature 300: 448–450

    Article  PubMed  CAS  Google Scholar 

  • Jolley WB, Hinshaw DB, Knierim K, Hinshaw DB (1983) Magnetic field effects on calcium efflux and insulin secretion in isolated rabbit islets of Langerhans. Bioelectromagnetics 4: 103–105

    Article  PubMed  CAS  Google Scholar 

  • Kaczmarek LK (1976) Frequency sensitive biochemical reactions. Biophys Chem 4: 249–252

    Article  PubMed  CAS  Google Scholar 

  • Kaczmarek LK, Adey WR (1974) Weak electric gradients change ionic and transmitter fluxes in cortex. Brain Res 66: 537–540

    Article  Google Scholar 

  • Kaiser F (1984) Entrainment-quasiperiodicity-chaos-collapse: bifurcation routes of externally driven self-sustained oscillating systems. In: Adey WR, Lawrence AF (eds) Nonlinear electrodynamics in biological systems. Plenum, New York, pp 393–412

    Google Scholar 

  • Korn H, Faber DS (1979) Electrical interactions between vertebrate neurons: field effects and electrotonic coupling. In: Schmitt FO, Worden FG (eds) The neurosciences: fourth study program. MIT Press, Cambridge, pp 333–358

    Google Scholar 

  • Lawrence AF, Adey WR (1982) Nonlinear wave mechanisms in interactions between excitable tissue and electromagnetic fields. Neurol Res 4: 115–153

    PubMed  CAS  Google Scholar 

  • Lin-Liu S, Adey WR (1982) Low frequency amplitude modulated microwave fields change calcium efflux rates from synaptosomes. Bioelectromagnetics 3: 309–322

    Article  PubMed  CAS  Google Scholar 

  • Lin-Liu S, Adey WR, Poo M-M (1984) Migration of cell surface concanavalin A receptors in pulsed electric fields. Biophys J 45: 1211–1218

    Article  PubMed  CAS  Google Scholar 

  • Luben RA, Cain CD (1984) Use of bone cell hormone response systems to investigate bioelectromagnetic effects on membranes in vitro. In: Adey WR, Lawrence AF (eds) Nonlinear electrodynamics on biological systems. Plenum, New York, pp 23–33

    Google Scholar 

  • Luben RA, Cain CD, Chen M-Y, Rosen DM, Adey WR (1982) Effects of electromagnetic stimuli on bone and bone cells in vitro: inhibition of responses to parathyroid hormone by low-energy, low-frequency fields. Proc Natl Acad Sci USA 79: 4180–4184

    Article  PubMed  CAS  Google Scholar 

  • Lyle DB, Schechter P, Adey WR, Lundak RL (1983) Suppression of T lymphocyte cytotoxicity fol-lowing exposure to sinusoidally amplitude-modulated fields. Bioelectromagnetics 4: 281–292

    Article  PubMed  CAS  Google Scholar 

  • Nicholson PW (1965) Specific impedance of cerebral white matter. Exp Neurol 13: 386–401

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka Y (1983) Calcium, phospholipid and transmembrane signalling. Philos Trans R Soc London [Biol] 302: 101–112

    Article  CAS  Google Scholar 

  • Nishizuka Y (1984) The role of protein kinase C in cell surface transduction and tumor promotion. Nature 308: 693–697

    Article  PubMed  CAS  Google Scholar 

  • Polk C (1984) Time varying magnetic fields and DNA synthesis: magnitude of forces due to magnetic fields on surface-bound counterions (Abstr) Proceedings of the 6th Annual Meeting of the Bioelectromagnetics Society, Atlanta, p 77

    Google Scholar 

  • Semm P (1983) Neurobiological investigations on the magnetic sensitivity of the pineal gland in rodents and pigeons. Comp Biochem Physiol 76A: 683–689

    Article  CAS  Google Scholar 

  • Shepherd GM (1974) The synaptic organization of the brain. Oxford University Press, Oxford

    Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the cell membrane. Science 175: 720–7321

    Article  PubMed  CAS  Google Scholar 

  • Smith RF (1984) Core temperature as a behavioral indicant of the rat’s reaction to low frequency magnetic fields. PhD Thesis, University of Kansas, Lawrence

    Google Scholar 

  • Snow RW, Dudek FE (1984) Electrical fields directly contribute to action potential synchronization during convulsant-induced epileptiform bursts. Brain Res 323: 114–118

    Article  PubMed  CAS  Google Scholar 

  • Takashima S, Onoral B, Schwan HP (1979) Effects of modulated RF energy on the EEG of mammalian brains. Radiat Environ Biophys 16: 15–27

    Article  PubMed  CAS  Google Scholar 

  • Taylor CP, Dudek FE (1984) Excitation of hippocampal pyramidal cells by an electrical field effect. J Neurophysiol 52: 126–142

    PubMed  CAS  Google Scholar 

  • Welker HA, Semm P, Willig RP, Wiltschko W, Vollrath L (1983) Effects of an artificial magnetic field on serotonin-N-acetyltransferase activity and melatonin content of the rat pineal gland. Exp Brain Res 50: 426–432

    Article  PubMed  CAS  Google Scholar 

  • Weyer R (1975) The circadian multi-oscillatory system of man. Int J Chronobiol 3: 19–55

    Google Scholar 

  • Young JZ (1951) Doubt and certainty in science. Oxford University Press, New York

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adey, W.R. (1988). Electromagnetic Field Interactions in the Brain. In: BaÅŸar, E. (eds) Dynamics of Sensory and Cognitive Processing by the Brain. Springer Series in Brain Dynamics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71531-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71531-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71533-4

  • Online ISBN: 978-3-642-71531-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics