Skip to main content

Generation of Fast and Slow Field Potentials of the Central Nervous System — Studied in Model Epilepsies

  • Conference paper
Dynamics of Sensory and Cognitive Processing by the Brain

Part of the book series: Springer Series in Brain Dynamics ((SSBD,volume 1))

Abstract

This chapter deals with the potentials detectable in the space surrounding cellular elements of central nervous structures. Such potentials, which can in part also be recorded from outside the central nervous system as for example, the electroencephalogram, sensory evoked potentials, contingent negative variatons, etc., are generally called “field potentials.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andersen P, Andersson SA (1968) Physiological basis of the alpha rhythm. Meredith, New York

    Google Scholar 

  • Caspers H (1959) Über die Beziehungen zwischen Dendritenpotential und Gleichspannung an der Hirnrinde. Pflügers Arch 269: 157–181

    Article  CAS  Google Scholar 

  • Caspers H (1963) Relations of steady potential shifts in the cortex to the wakefulness-sleep spectrum. In: Brazier MAB (ed) Brain function. University of California Press, Berkeley-Los Angeles, pp 177–213

    Google Scholar 

  • Caspers H, Speckmann E-J (1969) DC potential shifts in paroxysmal states. In: Jasper HH, Ward AA Jr, Pope A (eds) Basic mechanisms of the epilepsies. Little Brown, Boston, pp 375–388

    Google Scholar 

  • Caspers H, Speckmann E-J (1970) Postsynaptische Potentiale einzelner Neurone und ihre Beziehungen zum EEG. Z EEG EMG 1: 55–65

    Google Scholar 

  • Caspers H, Speckmann E-J (1974) Cortical DC shifts associated with changes of gas tension in blood and tissue. In: Remond A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 10A. Elsevier, Amsterdam, pp 41–65

    Google Scholar 

  • Caspers H, Speckmann E-J, Lehmenkühler A (1979) Effects of CO2 on cortical field potentials in relation to neuronal activity. In: Speckmann E-J, Caspers H (eds) Origin of cerebral field potentials. Thieme, Stuttgart, pp 151–163

    Google Scholar 

  • Caspers H, Speckmann E-J, Lehmenkühler A (1980) Electrogenesis of cortical DC potentials. Prog Brain Res 54: 3–15

    Article  PubMed  CAS  Google Scholar 

  • Caspers H, Speckmann E-J, Lehmenkühler A (1984) Electrogenesis of slow potentials of the brain. In: Rockstroh B, Lutzenberger W, Birbaumer N (eds) Self-regulation of the brain and behavior. Springer, Berlin Heidelberg NewYork Tokyo, pp 26–41

    Chapter  Google Scholar 

  • Creutzfeldt O, Houchin J (1974) Neuronal basis of EEG waves. In: Remond A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 2C. Elsevier, Amsterdam, pp 5–55

    Google Scholar 

  • Creutzfeldt O, Lux HD, Watanabe S (1966a) Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and epicortical stimulation. Electroencephalogr Clin Neurophysiol 20: 1–18

    Article  PubMed  CAS  Google Scholar 

  • Creutzfeldt O, Lux HD, Watanabe S (1966b) Relations between EEG phenomena and potentials of single cortical cells. II. Spontaneous and convulsoid activity. Electroencephalogr Clin Neurophysiol 20: 19–37

    Article  PubMed  CAS  Google Scholar 

  • De Robertis EDP, Carrea R (eds) (1965) Biology of neuroglia. Prog Brain Res 15

    Google Scholar 

  • Eccles JC (1964) The physiology of synapses. Springer, Berlin Göttingen Heidelberg

    Book  Google Scholar 

  • Eiger CE, Speckmann E-J (1980) Focal interictal epileptiform discharges (FIED) in the epicortical EEG and their relations to spinal field potentials in the rat. Electroencephalogr Clin Neurophysiol 48: 447–460

    Article  Google Scholar 

  • Eiger CE, Speckmann E-J (1983) Penicillin induced epileptic foci in the motor cortex: vertical inhibition. Electroencephalogr Clin Neurophysiol 56: 604–622

    Article  Google Scholar 

  • Eiger CE, Speckmann E-J, Prohaska O, Caspers H (1981) Pattern of intracortical potential distribution during focal interictal epileptiform discharges ( FIED) and its relation to spinal field potentials in the rat. Electroencephalogr Clin Neurophysiol 51: 393–402

    Article  Google Scholar 

  • Goldring S (1974) DC shifts released by direct and afferent stimulation. In: Remond A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 10A. Elsevier, Amsterdam pp 12–24

    Google Scholar 

  • Gumnit R (1974) DC shifts accompanying seizure activity. In: Remond A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 10A. Elsevier, Amsterdam, pp 66–77

    Google Scholar 

  • Gumnit RI, Matsumoto H, Vasconetto C (1970) DC activity in the depth of an experimental epileptic focus. Electroencephalogr Clin Neurophysiol 28: 333–339

    Article  PubMed  CAS  Google Scholar 

  • Hubbard JI, Llinas R, Quastel DMJ (1969) Electrophysiological analysis of synaptic transmission. Arnold, London (Monographs of the Physiological Society)

    Google Scholar 

  • Jasper HH, Ward AA, Pope A (eds) (1969) Basic mechanisms of the epilepsies. Little Brown, Boston

    Google Scholar 

  • Klee MR, Speckmann E-J, Lux HD (eds) (1981) Physiology and pharmacology of epileptogenic phenomena. Raven, New York

    Google Scholar 

  • Kuffler SW, Nicholls JG (1966) The physiology of neuroglia cells. Ergeb Physiol 57: 1–90

    PubMed  CAS  Google Scholar 

  • Kuffler SW, Nicholls JG, Orkand RK (1966) Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 29: 768–787

    PubMed  CAS  Google Scholar 

  • Lopes da Silva F, van Rotterdam A (1982) Biophysical aspects of EEG and MEG generation. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography. Urban and Schwarzenberg, Munich, pp 15–26

    Google Scholar 

  • Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29: 788–806

    PubMed  CAS  Google Scholar 

  • Palay SL, Chan-Palay V (1977) General morphology of neurons and neuroglia. In: Kandel ER (ed) The nervous system. American Physiological Society, Bethesda, pp 5–37 (Handbook of physiology, vol 1/1)

    Google Scholar 

  • Petsche H, Pockberger H, Rappelsberger P (1981) Current source density studies of epileptic phenomena and the morphology of the rabbit’s striate cortex. In: Klee MR, Lux HD, Speckmann E-J (eds) Physiology and pharmacology of epileptogenic phenomena. Raven, New York, pp 53–63

    Google Scholar 

  • Pockberger H, Petsche H, Rappelsberger P (1983) Intracortical aspects of penicillin-induced seizure patterns in the rabbit’s motor cortex. In: Speckmann E-J, Elger CE (eds) Epilepsy and motor system. Urban and Schwarzenberg, Munich, pp 161–178

    Google Scholar 

  • Pockberger H, Rappelsberger P, Petsche H (1984a) Penicillin-induced epileptic phenomena in the rabbit’s neocortex. I. The development of interictal spikes after epicortical application of penicillin. Brain Res 309: 247–260

    Article  PubMed  CAS  Google Scholar 

  • Pockberger H, Rappelsberger P, Petsche H (1984b) Penicillin-induced epileptic phenomena in the rabbit’s neocortex. II. Laminar specific generation of interictal spikes after the application of penicillin to different cortical depths. Brain Res 309: 261–269

    Article  PubMed  CAS  Google Scholar 

  • Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) (1972) Experimental models of epilepsy. Raven, New York

    Google Scholar 

  • Rall W (1977) Core conductor theory and cable properties of neurons. In: Kandel ER (ed) The nervous system. American Physiological Society, Bethesda, pp 39–97 (Handbook of physiology, vol 1/1)

    Google Scholar 

  • Shepherd GM (1974) The synaptic organization of the brain. Oxford University Press, London

    Google Scholar 

  • Somjen GG (1973) Electrogenesis of sustained potentials. Prog Neurobiol 1: 199–237

    Article  CAS  Google Scholar 

  • Somjen GG (1975) Electrophysiology of neuroglia. Annu Rev Physiol 37: 163–190

    Article  PubMed  CAS  Google Scholar 

  • Somjen GG, Trachtenberg M (1979) Neuroglia as generator of extracellular current. In: Speckmann E-J, Caspers H (eds) Origin of cerebral field potentials. Thieme, Stuttgart, pp 21–32

    Google Scholar 

  • Speckmann E-J (1986) Experimentelle Epilepsieforschung. Wissenschaftliche Buchgesellschaft, Darmstadt

    Google Scholar 

  • Speckmann E-J, Caspers H (1974) The effect of Or and CO2-tensions in the nervous tissue on neuronal activity and DC-potentials. In: Remond A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 2C. Elsevier, Amsterdam, pp 71–89

    Google Scholar 

  • Speckmann E-J, Caspers H (eds) (1979a) Origin of cerebral field potentials. Thieme, Stuttgart

    Google Scholar 

  • Speckmann E-J, Caspers H (1979b) Cortical field potentials in relation to neuronal activities in seizure conditions. In: Speckmann E-J, Caspers H (eds) Origin of cerebral field potentials. Thieme, Stuttgart, pp 205–213

    Google Scholar 

  • Speckmann E-J, Elger CE (1982) Neurophysiological basis of the EEG and of DC potentials. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography. Basic principles, clinical applications and related fields. Urban and Schwarzenberg, Munich, pp 1–13

    Google Scholar 

  • Speckmann E-J, Elger CE (1984) The neurophysiological basis of epileptic activity: a condensed overview. In: Degen R, Niedermeyer E (eds) Epilepsy, sleep and sleep deprivation. Elsevier, Amsterdam, pp 23–34

    Google Scholar 

  • Speckmann E-J, Caspers H, Janzen RWC (1972) Relations between cortical DC shifts and membrane potential changes of cortical neurons associated with seizure activity. In: Petsche H, Brazier MAB (eds) Synchronization of EEG activity in epilepsies. Springer, Wien New York, pp 93–111

    Google Scholar 

  • Speckmann E-J, Caspers H, Janzen RWC (1978) Laminar distribution of cortical field potentials in relation to neuronal activities during seizure discharges. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex. Raven, New York, pp 191–209 (IBRO monograph series, vol 3)

    Google Scholar 

  • Speckmann E-J, Caspers H, Elger CE (1984) Neuronal mechanisms underlying the generation of field potentials. In: Elbert T, Rockstroh B, Lutzenberger W, Birbaumer N (eds) Self-regulation of the brain and behavior. Springer, Berlin Heidelberg NewYork Tokyo, pp 9–25

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Speckmann, EJ., Walden, J. (1988). Generation of Fast and Slow Field Potentials of the Central Nervous System — Studied in Model Epilepsies. In: Başar, E. (eds) Dynamics of Sensory and Cognitive Processing by the Brain. Springer Series in Brain Dynamics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71531-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71531-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71533-4

  • Online ISBN: 978-3-642-71531-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics