Actions of Prostaglandins on the Heart

  • K. Schrör

Abstract

Prostaglandin synthetase activity in cardiac microsomal fractions was originally described in 1973 by Limas and Cohn [1]. This finding indicated that prostaglandins, which can affect myocardial contraction and, especially, coronary perfusion, are generated by the heart itself, i.e., cardiac muscle cells, the interstitium, and coronary vessels. Formation of all the major products of arachidonic acid peroxidation, including thromboxane A2 (TXA2) [2], prostacyclin (PGI2) [3, 4] and leukotrienes [5, 6] has been demonstrated in the heart and coronary vessels. The heart is not only able to generate eicosanoids but is also a major target for them. Thus eicosanoids, either synthesized by the heart itself or released from other organs and tissues (especially the lungs, platelets, and white cells) might act on the heart and the coronary circulation and significantly modify the cardiac output.

Keywords

Lactate Serotonin Pyruvate Noradrenaline Cardiol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Limas CJ, Cohn JN (1973) Isolation and properties of myocardial prostaglandin synthetase. Cardiovasc Res 7: 623–628PubMedCrossRefGoogle Scholar
  2. 2.
    Anhut H, Bernauer W, Peskar BA (1977) Radioimmunological determination of thromboxane release in cardiac anaphylaxis. Eur J Pharmacol 44: 85–88PubMedCrossRefGoogle Scholar
  3. 3.
    Schror K, Moncada S, Ubatuba FB, Vane JR (1977) Formation of prostacyclin (PGX) causes decrease in the coronary vascular resistance during application of arachidonic acid. Naunyn-Schmiedebergs Arch Pharmacol 297(suppl II]:R–31Google Scholar
  4. 4.
    De Deckere EAM, Nugteren DH, Ten Hoor F (1977) Prostacyclin is the major prostaglandin released from the isolated perfused rabbit and rat heart. Nature 268: 160–163PubMedCrossRefGoogle Scholar
  5. 5.
    Piper PJ, Letts LG, Galton SA (1983) Generation of a leukotriene–like substance from porcine vascular and other tissues. Prostaglandins 25: 591–599PubMedCrossRefGoogle Scholar
  6. 6.
    Liebig R, Bernauer W, Peskar BA (1975) Prostaglandin, slow-reacting substance, and histamine release from anaphylactic guinea pig hearts and its pharmacological modification. Naunyn-Schmiedebergs Arch Pharmacol 289: 65–75PubMedCrossRefGoogle Scholar
  7. 7.
    Takano T, Vyden JK, Rose HB, Corday E, Swan HJC (1977) Beneficial effects of PGEX in acute myocardial infarction. Am J Cardiol 39: 297Google Scholar
  8. 8.
    Ogletree ML, Lefer AM, Smith JB, Nicolaou KC (1979) Studies on the protective effect of prostacyclin in acute myocardial ischemia. Eur J Pharmacol 56: 95–103PubMedCrossRefGoogle Scholar
  9. Schrör K, Ohlendorf R, Darius H (1981) Beneficial effects of a new prostacyclin derivative, ZK 36374, in acute myocardial ischemia. J Pharmacol Exp Ther 219: 243–249PubMedGoogle Scholar
  10. 10.
    Smith EF III, Gallenkämper W, Beckmann R, Thomsen T, Mannesmann G, Schrör K (1984) Early and late administration of a PGI2-analogue, ZK 36374 (Iloprost): effects on myocardial preservation, collateral blood flow and infarct size. Cardiovase Res 28: 163–173CrossRefGoogle Scholar
  11. 11.
    Araki H, Lefer AM (1980) Role of prostacyclin in the preservation of ischemic myocardial tissue in the perfused cat heart. Circ Res 47: 757–763PubMedGoogle Scholar
  12. 12.
    Schrör K, Ohlendorf R, Darius H (1982) Dissociation of antiplatelet effects from myocardial cytoprotective activity during myocardial ischemia in cats by a new carbacyclin derivative (ZK 36375). J Cardiovase Pharmacol 4: 554–561Google Scholar
  13. 13.
    Malik KU, McGiff JC (1976) Cardiovascular actions of prostaglandins. In: Karim SM (ed) Prostaglandins: physiological, pharmacological and pathological aspects. MTP Press, Lancaster, pp 103–200Google Scholar
  14. 14.
    Nakano J (1973) Cardiovascular actions. In: Ramwell PW (ed) The prostaglandins. Plenum, New York, pp 238–316Google Scholar
  15. 15.
    Hedqvist P, Wennmalm A (1971) Comparison of the effects of prostaglandins El5 E2 and F2a on the sympathetically stimulated rabbit heart. Acta Physiol Scand 83: 156–162PubMedCrossRefGoogle Scholar
  16. 16.
    Smith EF III, Köster R, Dammrau R, Addicks K, Schrör K (1982) Effect of prostaglandins on catecholamine overflow, cardiac performance and catecholamine localization in sympathetically stimulated rabbit hearts. Fed Proc 41: 1642 (abstract)Google Scholar
  17. 17.
    Endoh M (1976) Effects of prostaglandin Ex on the positive inotropic actions of noradrenaline, nerve stimulation and calcium in the isolated blood-perfused papillary muscle of the dog. Eur J Pharmacol 39: 259–265PubMedCrossRefGoogle Scholar
  18. 18.
    Chiba S, Malik KU (1981) Prostaglandins do not modulate the positive chronotropic and inotropic effects of sympathetic nerve stimulation and injected norepinephrine in the isolated blood perfused canine atrium. Life Sci 28: 687–695PubMedCrossRefGoogle Scholar
  19. 19.
    Krebs R, Schrör K (1975) Actions of prostaglandin E2 (PGE2) on myocardial mechanics, coronary vascular resistance and oxygen consumption in the isolated guinea pig heart preparation. Br J Pharmacol 55: 403–08PubMedGoogle Scholar
  20. 20.
    Ogletree ML, Beardsley AC, Lefer AM (1975) Myocardial actions of prostaglandins in isolated cat cardiac tissue. Life Sci 16: 1923–1930PubMedCrossRefGoogle Scholar
  21. 21.
    Schrör K, Link H-B, Rösen R, Klaus W, Rösen P (1980) Mechanisms of prostacyclin-in-duced coronary vasodilation in the rat heart in vitro. Eur J Pharmacol 64: 341–348PubMedCrossRefGoogle Scholar
  22. 22.
    Schrör K, Moncada S (1979) Effects of prostacyclin on coronary circulation, heart rate and myocardial contractile force in isolated hearts of guinea pig and rabbit - comparison with PGE2. Prostaglandins 17: 367–373PubMedCrossRefGoogle Scholar
  23. 23.
    Darius H, Köster R, Addicks K, Schrör K (1983) Platelet-independent cardioprotective actions of a stable PGI2 analogue in acute myocardial ischemia in vitro. J Mol Cell Cardiol 15 [suppl l]: (abstract 118)Google Scholar
  24. 24.
    Wennmalm A (1978) Prostaglandin-mediated inhibition of noradrenaline release. III. Separation of prostaglandins released from stimulated hearts and analysis of their neurosecretion inhibitory capacity. Prostaglandins 15: 113–121PubMedCrossRefGoogle Scholar
  25. 25.
    Schrör K, Krebs R, Nookhwun Ch (1976) Increase in the coronary vascular resistance by indomethacin in the isolated guinea pig heart preparation in the absence of changes in mechanical performance and oxygen consumption. Eur J Pharmacol 39: 161–169PubMedCrossRefGoogle Scholar
  26. 26.
    Terashita Z-I, Fukui H, Nishikawa K, Hirata M, Kikuchi S (1978) Coronary vasospastic action of thromboxane A2 in isolated, working guinea pig hearts. Eur J Pharmacol 53:49– 56PubMedCrossRefGoogle Scholar
  27. 27.
    Posner P, Lambert CR (1982) Studies of prostaglandins Ei and F2at on isolated mammalian cardiac tissue. Pharmacology 25: 26–32PubMedCrossRefGoogle Scholar
  28. 28.
    Smith EF III, Lefer AM, Aharony D, Smith BJ, Magolda RL, Claremon D, Nicolaou KC (1981) Carbocyclic thromboxane A2: Aggrevation of myocardial ischemia by a new synthetic thromboxane A2 analog. Prostaglandins 21: 443–456PubMedCrossRefGoogle Scholar
  29. 29.
    Schrör K (1978) Bildung und Funktion von Prostaglandinen im Herzen. Habilitationsschrift, KölnGoogle Scholar
  30. 30.
    Belo SE, Talesnik J (1981) Coronary vasoconstrictory and vasodilatory actions of arachi-donic acid in the isolated perfused rat heart. Br J Pharmacol 75: 269–286Google Scholar
  31. 31.
    Weinerowski P, Wittman G, Aehringhaus U, Peskar BA (1985) Pharmacolocigal modification of leukotriene release and coronary constrictor effect in cardiac anaphylaxis. Adv Prostaglandin Thromboxane Leukotriene Res 13: 47–50Google Scholar
  32. 32.
    Burke JR, Levi R (1982) Leukotrienes C4, D4 and E4: Effects on human and guinea pig cardiac preparations in vitro. J Pharmacol Exp Ther 221: 235–241PubMedGoogle Scholar
  33. 33.
    Letts LG, Piper PJ (1982) The actions of leukotrienes C4 and D4 on guinea pig isolated hearts. Br J Pharmacol 76: 169–176PubMedGoogle Scholar
  34. 34.
    Terashita Z-I, Fukui H, Hirata M, Terao S, Ohkawa S, Nishikawa K, Kikuchi S (1981) Coronary vasoconstriction and PGI2 release by leukotrienes in isolated guinea pig hearts. Eur J Pharmacol 73: 357–361CrossRefGoogle Scholar
  35. 35.
    Roth DM, Reibel DK, Lefer AM (1984) Altered coronary vascular responsiveness to leuko-trienes in alloxan diabetic rats. Circ Res 54: 388–395PubMedGoogle Scholar
  36. 36.
    Benveniste J, Boullet C, Brink C, Labat C (1983) The actions of Paf-acether (platelet activating factor) on guinea pig isolated heart preparations. Br J Pharmacol 80: 81–83PubMedGoogle Scholar
  37. 37.
    Schrör K, Förster W (1974) Interactions between isoproterenol and prostaglandin E2 in the dog heart in situ. Pol J Pharmacol Pharm 26: 143–149PubMedGoogle Scholar
  38. 38.
    Fitzpatrick TM, Alter I, Corey EJ, Ramwell PW, Rose JC, Kot PA (1978) Cardiovascular responses to PGI2 (prostacyclin) in the dog. Circ Res 42: 192–194PubMedGoogle Scholar
  39. 39.
    Kot PA, Johnson M, Ramwell PW, Rose JC (1975) Effects of ganglionic and ß-adrenergic blockade on cardiovascular responses to the bisenoic prostaglandins and their precursor ara-chidonic acid. Proc Soc Exp Biol Med 149: 953–957PubMedGoogle Scholar
  40. 40.
    Dusting GJ, Moncada S, Vane JR (1979) Prostaglandins, their intermediates and precursors: Cardiovascular actions and regulatory roles in normal and abnormal circulatory systems. Prog Cardio vase Dis 21: 405–430CrossRefGoogle Scholar
  41. 41.
    Schrör K (1986) Cardiac muscle and coronary vessels. In: Curtis-Prior P (ed) Handbook of prostaglandins and related compounds. Churchill-Livingstone, EdinburghGoogle Scholar
  42. 42.
    Armstrong JM, Chappie D, Dusting GJ, Hughes R, Moncada S, Vane JR (1977) Cardiovascular actions of prostacyclin (PGI2) in chloralose anesthetized dogs. Br J Pharmacol 61: 136P (abstract)Google Scholar
  43. 43.
    Hintze TH, Panzenbeck MJ, Messina EJ, Kaley G (1981) Prostacyclin (PGI2) lowers heart rate in the conscious dog. Cardiovasc Res 15: 538–546PubMedCrossRefGoogle Scholar
  44. 44.
    Panzenbeck MJ, Kaley G (1983) Leukotriene D4 reduces coronary blood flow in the anesthetized dog. Prostaglandins 25: 661–670PubMedCrossRefGoogle Scholar
  45. 45.
    Letts LG, Newman DL, Greenwald SE, Piper PJ (1983) Effects of intracoronary administration of leukotriene D4 in the anesthetized dog. Prostaglandins 26: 563–572PubMedCrossRefGoogle Scholar
  46. 46.
    Ertl G, Fiedler V, Abram TS, Kochsiek K (1985) Coronary effects of leukotrienes C4 and D4 at normal and reduced coronary perfusion. In: Schrör K (ed) Prostaglandins and other eicosanoids in the cardiovascular system. Karger, Basel, pp 322–327Google Scholar
  47. 47.
    Michelassi F, Lauda L, Hill RD, Lowenstein E, Watkins WD, Petkan AJ, Zapol WM (1982) Leukotriene D4: a potent coronary artery vasoconstrictor associated with impaired ventricular contraction. Science 217: 841–843PubMedCrossRefGoogle Scholar
  48. 48.
    Coker SJ, Parratt JR, Ledingham IMcA, Zeitlin IJ (1981) Thromboxane and prostacyclin release fom ischemic myocardium in relation to arrhythmias. Nature 291: 323–324PubMedCrossRefGoogle Scholar
  49. 49.
    Barst S, Mullane K (1985) The release of a leukotriene D4-like substance following myocardial infarction in rabbits. Eur J Pharmacol 114: 383–387PubMedCrossRefGoogle Scholar
  50. 50.
    Evers AS, Murphree S, Saffiz JE, Jakschik BA, Needleman P (1985) Effects of endogenously produced leukotrienes, thromboxane and prostaglandins on coronary vascular resistance in rabbit myocardial infarction. J Clin Invest 75: 992–999PubMedCrossRefGoogle Scholar
  51. 51.
    Opie LH (1982) Role of cyclic nucleotides in heart metabolism. Cardiovasc Res 16:483– 507PubMedCrossRefGoogle Scholar
  52. 52.
    Romson JL, Hook BG, Kunkel SL, Abrams GD, Schork MA, Lucchesi BR (1983) Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation 67: 1016–1023PubMedCrossRefGoogle Scholar
  53. 53.
    Meerson FZ, Kagan VE, Kozlow YP, Beiina LM, Arkhipenko YP (1982) The role of lipid peroxidation in pathogenesis of ischemic damage and the antioxidant protection of the heart. Basic Res Cardiol 77: 465–485PubMedCrossRefGoogle Scholar
  54. 54.
    Hearse DJ, Humphrey SM, Bullock GR (1978) The oxygen paradox and the calcium paradox: two facets of the same problem? J Mol Cell Cardiol 10: 641–668PubMedCrossRefGoogle Scholar
  55. 55.
    Schrör K, Addicks K, Darius H, Ohlendorf R, Rösen P (1981) PGI2 inhibits ischemia–induced platelet activation and prevents myocardial damage by inhibition of catecholamine release. Evidence for cAMP as a common denominator. Thromb Res 21: 175–180PubMedCrossRefGoogle Scholar
  56. 56.
    Smith EF III, Kloster G, Stöcklin G, Schrör K (1984) Effect of Iloprost on membrane integrity in ischemic rabbit hearts. Biomed Biochim Acta 43: S155–S158PubMedGoogle Scholar
  57. 57.
    Schrör K, Funke K (1985) Prostaglandins and myocardial noradrenaline overflow after sympathetic nerve stimulation during ischemia and reperfusion. J Cardiovasc Pharmacol 7 [suppl 5]: S50–S54PubMedCrossRefGoogle Scholar
  58. 58.
    Nayler WG, Purchase M, Dusting GJ (1984) Effect of prostacyclin infusion during low-flow ischemia in the isolated perfused rat heart. Basic Res Cardiol 79: 125–134PubMedCrossRefGoogle Scholar
  59. 59.
    Thiemermann C, Steinhagen-Thiessen E, Schrör K (1984) Inhibition of oxygen-centered free radical formation by the stable prostacyclin mimetic iloprost (ZK 36 374) in acute myocardial ischemia. J Cardiovasc Pharmacol 6: 365–366PubMedCrossRefGoogle Scholar
  60. 60.
    Hutton I, Parratt JR, Lawrie TDV (1973) Cardiovascular effects of prostaglandin E1 in experimental myocardial infarction. Cardiovasc Res 7: 149–155PubMedCrossRefGoogle Scholar
  61. 61.
    Jugdutt BI, Hutchins GM, Bulkley BH, Becker LC (1981) Dissimilar effects of prostacyclin, prostaglandin Ex and prostaglandin E2 on myocardial infarct size after coronary occlusion in conscious dogs. Circ Res 49: 685–700PubMedGoogle Scholar
  62. 62.
    Ribeiro LG, Brandon TA, Hopkins DG, Reduto LA, Taylor AA, Miller RR (1981) Prostacyclin in experimental myocardial ischemia: Effects on hemodynamics, regional myocardial blood flow, infarct size and mortality. Am J Cardiol 47: 835–840PubMedCrossRefGoogle Scholar
  63. 63.
    Schrör K, Verheggen R (1986) Prostacyclins are only weak antagonists of coronary vasoconstriction induced by authentic thromboxane A2 and serotonin. J Cardiovasc Pharmacol (to be published)Google Scholar
  64. 64.
    Lefer AM, Smith EF III (1979) Protective action of prostacyclin in myocardial ischemia and trauma. In: Vane JR, Bergström S (eds) Prostacyclin. Raven, New York, pp 339–347Google Scholar
  65. 65.
    Einzig S, Sotomova R, Rao GHR, Gerrard JM, Foker E, White JG (1980) Effect of low-dose prostacyclin infusion on blood flow in acutely ischemic canine myocardium. Prostaglandins Med 5: 209–219PubMedCrossRefGoogle Scholar
  66. 66.
    Coker SJ, Parratt JR (1981) Prostacyclin-induced changes in coronary blood flow and oxygen handling in the normal and acutely ischemic canine myocardium. Basic Res Cardiol 76: 457–462PubMedCrossRefGoogle Scholar
  67. 67.
    Dusting GJ, Angus JA (1984) Interactions of epoprostenol (PGI2) with vasoconstrictors on diameter of large coronary arteries of the dog. J Cardiovasc Pharmacol 6: 20–27PubMedCrossRefGoogle Scholar
  68. 68.
    Jaschonek K, Weisenberger H, Karsch KR, Renn W, Daiss W, Schenzle D, Ostendorf P (1984) Impaired platelet prostacyclin binding in acute myocardial infarction. Lancet 1:1341– 1342CrossRefGoogle Scholar
  69. 69.
    Ganz P, Gaspar J, Colucci S, Barry WH, Mudge GH, Alexander RW (1984) Efects of prostacyclin on coronary hemodynamics at rest and in response to cold pressure testing in patients with angina pectoris. Am J Cardiol 53: 1500–1504PubMedCrossRefGoogle Scholar
  70. 70.
    Reibel DK, Rovetto MJ (1978) Myocardial ATP synthesis and mechanical function following oxygen deficiency. Am J Physiol 245: H620–H624Google Scholar
  71. 71.
    Gercken G, Gallenkämper W, Schrör K, Trotz M (1982) Effects of ciloprost on myocardial metabolism during acute ischemia and heart arrest. Pflügers Arch 394 [suppl]: R14CrossRefGoogle Scholar
  72. 72.
    Schrör K, Darius H, Addicks K, Köster R, Smith EF III (1982) PGI2 prevents ischemia- induced alterations in cardiac catecholamines without influencing nerve-stimulation induced catecholamine release in non-ischemic conditions. J Cardiovasc Pharmacol 4: 741–748PubMedCrossRefGoogle Scholar
  73. 73.
    Rösen R, Rösen P, Ohlendorf R, Schrör K (1981) Prostacyclin prevents ischemia-induced increase of lactate and cyclic AMP in ischemic myocardium. Eur J Pharmacol 69: 489–491PubMedCrossRefGoogle Scholar
  74. 74.
    Bergman G, Daly K, Atkinson L, Rothman M, Richardson PJ, Jackson G, Jewitt DE (1981) Prostacyclin: Haemodynamic and metabolic effects in patients with coronary artery disease. Lancet 1: 569–572Google Scholar
  75. 75.
    van Gilst WH, Boonstra PW, Terpstra JA, Wildevuur CRM, de Langen CDJ (1983) Improved functional recovery of the isolated rat heart after 24 hours of hypothermic arrest with a stable prostacyclin analogue (ZK 36374). J Mol Cell Cardiol 15: 789–792PubMedCrossRefGoogle Scholar
  76. 76.
    Iversen LL (1973) Catecholamine uptake processes. Br Med Bull 29: 130–135PubMedGoogle Scholar
  77. 77.
    Gaudel Y, Karaguenzian HS, De Leiris J (1979) Deleterious effects of endogenous catecholamines on hypoxic myocardial cells following reoxygenation. J Mol Cell Cardiol 11: 717–731CrossRefGoogle Scholar
  78. 78.
    Raab W, Van Lith P, Lepeschkin E, Herrlich HC (1962) Catecholamine-induced myocardial hypoxia in the presence of impaired coronary dilatability independent of external cardiac work. Am J Cardiol 9:455–470PubMedCrossRefGoogle Scholar
  79. 79.
    Maseri A, Severi S, Denes M, L’Abbate A, Chierchia S, Marzilli M, Ballestra A-M, Parodi O, Biagini A, Distante A (1978) Variant angina: one aspect of a continuous spectrum of vasospastic myocardial ischemia. Pathogenetic mechanism, estimated incidence, clinical and coronarographic findings in 138 patients. Am J Cardiol 42: 1019–1035PubMedCrossRefGoogle Scholar
  80. 80.
    Rona G (1985) Catecholamine cardiotoxicity. J Mol Cell Cardiol 17: 291–306PubMedCrossRefGoogle Scholar
  81. 81.
    Elson JJ, Ten Eick RE, Singer DH (1981) Autonomic nervous system and cellular injury from circumflex ligation in dogs. Am J Physiol 240: H738–H745PubMedGoogle Scholar
  82. 82.
    Jones CE, Devous Sr MD, Thomas JX, Dupont E (1978) The effect of chronic cardiac denervation on infarct size following acute coronary occlusion. Am Heart J 95: 738–746PubMedCrossRefGoogle Scholar
  83. 83.
    Downing SE, Chen V (1985) Myocardial injury following endogenous catecholamine release in rabbits. J Mol Cell Cardiol 17: 377–387PubMedCrossRefGoogle Scholar
  84. 84.
    Waldenstrom AP, Hjalmarson AC, Thornell L (1978) A possible role of noradrenaline in the development of myocardial infarction: an experimental study in the isolated rat heart. Am Heart J 95: 43–51PubMedCrossRefGoogle Scholar
  85. 85.
    Corr PB, Shayman JA, Kramer JB, Kippnis RJ (1981) Increased alpha adrenergic receptors in ischemic cat myocardium. J Clin Invest 67: 1232–1236PubMedCrossRefGoogle Scholar
  86. 86.
    Mukherjee A, McCoy KE, Duke RJ, Hogan M, Hagler H, Buja LM, Willerson JT (1982) Relationship between ß–adrenergic receptor numbers and physiological ischemia. Circ Res 50: 735–741PubMedGoogle Scholar
  87. 87.
    Nayler WG, Sturrock WJ (1983) An inhibitory effect of verapamil and diltiazem on the release of noradrenaline from ischemic and reperfused hearts. J Mol Cell Cardiol 16: 331–344CrossRefGoogle Scholar
  88. 88.
    Zylka V, Addicks K, Deutsch H-J, Friedrich R, Griebenow G, Hirche H-J (1981) The anti-arrhythmic effect of prostacyclin (PGI2) in severe myocardial ischemia of pig heart. Pfliigers Arch 389[suppl]: R–l (abstract)Google Scholar
  89. 89.
    Holmgren S, Abrahamsson T, Almgren O, Eriksson BM (1981) Effects of ischemia on the adrenergic neurons of the rat heart. A fluorescence histochemical and biochemical study. Cardiovasc Res 11: 680–689CrossRefGoogle Scholar
  90. 90.
    Muntz KH, Hagler HK, Bujas J, Willerson JT, Buja LM (1984) Redistribution of catechol-amines in the ischemic zone of the dog heart. Am J Pathol 114: 64–78PubMedGoogle Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1987

Authors and Affiliations

  • K. Schrör
    • 1
  1. 1.Pharmakologisches Institut der Universität KölnKölnGermany

Personalised recommendations