Skip to main content

Profile of Generation of Eicosanoids by Blood Vessels and the Heart

  • Conference paper
Prostacyclin and Its Stable Analogue Iloprost
  • 76 Accesses

Abstract

In the vessel wall arachidonic acid, the major precursor of eicosanoid biosynthesis in mammalian tissues, is mainly metabolized via the cyclo-oxygenase pathway. In the endothelial or smooth muscle layers of the blood vessel wall, arachidonic acid is preferentially converted to prostaglandin (PG)I2, which is a potent vasodilator and inhibitor of platelet aggregation [32]. In blood platelets, on the other hand, arachidonic acid is preferentially converted via cyclo-oxygenase and thromboxane (TX) synthetase to TXA2, a vasoconstrictor and potent inducer of platelet aggregation [22]. On the basis of these facts a TXA2-PGI2 balance had been proposed, offering a concept for the participation of eicosanoids in normal hemostasis and in pathological conditions [32]. This hypothesis has stimulated an abundance of basic and clinical research, even though the importance of PGI2 has recently been questioned [26].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adcock JJ, Garland LG, Moncada S, Salmon JA (1978) Enhancement of anaphylactic mediator release from guinea-pig perfused lungs by fatty acid hydroperoxides. Prostaglandins 16: 163–177

    Article  PubMed  CAS  Google Scholar 

  2. Aehringhaus U, Peskar BA, Wittenberg HR, Wölbling RH (1983) Effect of inhibition of synthesis and receptor antagonisms of SRS-A in cardiac anaphylaxis. Br J Pharmacol 80: 73–80

    PubMed  CAS  Google Scholar 

  3. Aehringhaus U, Dembinska-Kiec A, Peskar BA (1984) Effects of exogenous prostaglandins on the release of leukotriene C4-like immunoreactivity and on coronary flow in indomethacin-treated anaphylactic guinea-pig hearts. Naunyn-Schmiedebergs Arch Pharmacol 326: 368–374

    Article  PubMed  CAS  Google Scholar 

  4. Anhut H, Bernauer W, Peskar BA (1977) Radioimmunological determination of thromboxane release in cardiac anaphylaxis. Eur J Pharmacol 44: 85–88

    Article  PubMed  CAS  Google Scholar 

  5. Barst S, Mullane K (1985) The release of a leukotriene D4-like substance following myocardial infarction in rabbits. Eur J Pharmacol 114: 383–387

    Article  PubMed  CAS  Google Scholar 

  6. Boot JR, Dawson W, Cockerill AF, Mallen DNB, Osborne DJ (1977) The pharmacology of prostaglandin-like substances released from guinea-pig lungs during anaphylaxis. Prostaglandins 13: 927–932

    Article  PubMed  CAS  Google Scholar 

  7. Chagnon M, Gentile J, Gladu M, Sirois P (1985) The mechanism of action of leukotrienes A4, C4 and D4 on human lung parenchyma in vitro. Lung 163: 55–62

    Article  PubMed  CAS  Google Scholar 

  8. Cortellaro M, Boschetti C, Antoniazzi V, Moreo G, Repetto S, Verna E, Boscarini M, Limido A, Binaghi G, Polli EE (1983) Transcoronary platelet thromboxane A2 formation without platelet trapping in patients with coronary stenosis — effect of sulphinpyrazone treatment. Thromb Haemostas 50: 857–859

    CAS  Google Scholar 

  9. D’Angelo V, Villa S, Mysliewiec M, Donati MD, de Gaetano G (1978) Defective fibrinolytic and prostacyclin-like activity in human atheromatous plaques. Thromb Haemostas 39: 535–536

    Google Scholar 

  10. De Caterina R, Dorso CR, Tack-Goldman K, Weksler BB (1985) Nitrates and endothelial prostacyclin production: studies in vitro. Circulation 71: 176–182

    Article  PubMed  Google Scholar 

  11. Dembinska-Kiéc A, Gryglewska T, Zmuda A, Gryglewski RJ (1977) The generation of prostacyclin by arteries and by the coronary vascular bed is reduced in experimental atherosclerosis in rabbits. Prostaglandins 14: 1025–1034

    Article  PubMed  Google Scholar 

  12. Dorian B, Larrue J, Defeudis FV, Salari H, Borgeat P, Braquet P (1984) Activation of prostacyclin synthesis in cultured aortic smoth muscle cells by diuretic-anthipertensive drugs. Biochem Pharmacol 33: 2265–2269

    Article  PubMed  CAS  Google Scholar 

  13. Edlund A, Berglund B, Kaijser L, Patrono C, Sollevi A, van Dome D, Wennmalm A (1983) Release of adenosine and prostacyclin from ischemic human hearts. Adv Prostaglandin Thromboxane Leukotriene Res 11: 365–370

    CAS  Google Scholar 

  14. Engineer DM, Morris HR, Piper PJ, Sirois P (1978) The release of prostaglandins and thromboxanes from guinea-pig lung by slow reacting substance of anaphylaxis, and its inhibition. Br J Pharmacol 64: 211–218

    PubMed  CAS  Google Scholar 

  15. Evers AS, Murphree S, Saffitz JE, Jakschik BA, Needleman P (1985) Effects of endogenously produced leukotrienes, thromboxane and prostaglandins on coronary vascular resistance in rabbit myocardial infarction. J Clin Invest 75: 992–999

    Article  PubMed  CAS  Google Scholar 

  16. Fitzgerald GA, Brash AR, Falardeau P, Oates JA (1981) Estimated rate of prostacyclin secretion into the circulation of normal man. J Clin Invest 68: 1272–1276

    Article  PubMed  CAS  Google Scholar 

  17. Fitzgerald GA, Pedersen AK, Patrono C (1983) Analysis of prostacyclin and thromboxane. Biosynthesis in cardiovascular tissue. Circulation 67: 1174–1177

    Article  PubMed  CAS  Google Scholar 

  18. Fitzgerald DJ, Roy L, Robertson RM, Fitzgerald GA (1984) The effects of organic nitrates on prostacyclin biosynthesis and platelet function in humans. Circulation 70: 297–302

    Article  PubMed  CAS  Google Scholar 

  19. Fitzgerald GA, Smith B, Pedersen AK, Brash AR (1984) Increased prostacyclin biosynthesis in patients with severe atherosclerosis and platelet activation. N Engl J Med 310: 1065–1068

    Article  PubMed  CAS  Google Scholar 

  20. Folco G, Hansson G, Granstrom E (1981) Leukotriene C4 stimulates TXA2 formation in isolated sensitized guinea-pig lungs. Biochem Pharmacol 30: 2491–2493

    Article  PubMed  CAS  Google Scholar 

  21. Gerritsen ME, Printz MP (1981) Sites of prostaglandin synthesis in the bovine heart and isolated bovine coronary micro vessels. Circ Res 49: 1152–1163

    PubMed  CAS  Google Scholar 

  22. Hamberg M, Svensson J, Samuelsson B (1975) Thromboxanes: a new group biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci USA 72: 2994–2998

    Article  PubMed  CAS  Google Scholar 

  23. Hammarstrom S, Falardeau P (1977) Resolution of prostaglandin endoperoxide synthase and thromboxane synthase of human platelets. Proc Natl Acad Sci USA 74: 3691–3695

    Article  PubMed  CAS  Google Scholar 

  24. Herman AG, Moncada S, Vane JR (1977) Formation of prostacyclin (PGI2) by different layers of the arterial wall. Arch Int Pharmacodyn Ther 227: 162–163

    PubMed  CAS  Google Scholar 

  25. Hirsh PD, Hillis LD, Campbell WB, Firth BG, Willerson JT (1981) Release of prostaglandins and thromboxane into the coronary circulation in patients with ischemic heart disease. N Engl J Med 304: 685–691

    Article  PubMed  CAS  Google Scholar 

  26. Hornstra G, Haddeman E, Kloeze J, Verschuren PM (1983) Dietary-fat-induced changes in the formation of prostanoids of the 2 and 3 series in relation to arterial thrombosis (rat) and atherosclerosis (rabbit). Adv Prostaglandin Thromboxane Leukotriene Res 12: 193–202

    CAS  Google Scholar 

  27. Larrue J, Leroux C, Daret D, Bricaud H (1982) Decreased prostaglandin production in cultured smooth muscle cells from atherosclerotic rabbit aorta. Biochim Biophys Acta 710: 257–263

    PubMed  CAS  Google Scholar 

  28. Lewy RI, Smith JB, Silver MJ, Saia J, Walinsky P, Wiener L (1979) Detection of thromboxane B2 in peripheral blood of patients with Prinzmetal’s angina. Prostaglandins Med 5: 243–248

    Article  Google Scholar 

  29. Marcus AJ, Weksler BB, Jaffe EA, Broekman MJ (1980) Synthesis of prostacyclin from platelet-derived endoperoxides by cultured human endothelial cells. J Clin Invest 66: 979–986

    Article  PubMed  CAS  Google Scholar 

  30. Masotti G, Poggesi L, Galanti G, Neri Serneri GG (1979) Stimulation of prostacyclin by dipyridamole. Lancet 1: 1412

    Article  PubMed  CAS  Google Scholar 

  31. Mehta J, Mehta P, Feldman RL, Horalek C (1984) Thromboxane release in coronary artery disease: spontaneous versus pacing-induced angina. Am Heart J 107: 286–292

    Article  PubMed  CAS  Google Scholar 

  32. Moncada S, Gryglewski R, Bunting S, Vane JR (1976) An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263: 663–665

    Article  PubMed  CAS  Google Scholar 

  33. Neri Serneri GG (1984) Prostaglandins and ischemic heart disease. In: Neri Serneri GG, Masotti G, Gensini GF (eds) Platelets prostaglandins and the cardiovascular system. Florence, abstract book, pp 20–21

    Google Scholar 

  34. Piper PJ, Samhoun MN (1981) The mechanism of action of leukotrienes C4 and D4 in guinea-pig isolated perfused lung and parenchymal strips of guinea-pig, rabbit and rat. Prostaglandins 21: 793–803

    Article  PubMed  CAS  Google Scholar 

  35. Piper PJ, Letts LG, Galton SA (1983) Generation of a leukotriene-like substance from porcine vascular and other tissues. Prostaglandins 25: 591–599

    Article  PubMed  CAS  Google Scholar 

  36. Robertson RM, Robertson D, Roberts LJ, Maas RL, Fitzgerald GA, Friesinger GC, Oates JA (1981) Thromboxane A2 in vasotonic angina pectoris: evidence from direct measurements and inhibitor trials. N Engl J Med 304: 998–1003

    Article  PubMed  CAS  Google Scholar 

  37. Roy L, Knapp HR, Robertson RM, Fitzgerald GA (1985) Endogenous biosynthesis of prostacyclin during cardiac catheterization and angiography in man. Circulation 71: 434–440

    Article  PubMed  CAS  Google Scholar 

  38. Salzman PM, Salmon JA, Moncada S (1980) Prostacyclin and thromboxane A2 synthesis by rabbit pulmonary artery. J Pharmacol Exp Ther 215: 240–247

    PubMed  CAS  Google Scholar 

  39. Samhoun MN, Piper PJ (1984) Actions and interactions of lipoxygenase and cyclo-oxygenase products in respiratory and vascular tissues. Prostaglandins Leukotrienes Med 13: 79–87

    Article  CAS  Google Scholar 

  40. Schror K, Moncada S, Ubatuba FB, Vane JR (1978) Transformation of arachidonic acid and prostaglandin endoperoxides by the guinea-pig heart: formation of RCS and prostacyclin. Eur J Pharmacol 47: 103–114

    Article  PubMed  CAS  Google Scholar 

  41. Schror K, Grodzinska L, Darius H (1981) Stimulation of coronary vascular prostacyclin and inhibition of human platelet thromboxane A2 after low-dose nitroglycerin. Thromb Res 23: 59–67

    Article  PubMed  CAS  Google Scholar 

  42. Simmet Th, Peskar BA (1986) Eicosanoids and the coronary circulation. Rev Physiol Biochem Pharmacol 104: 1–64

    Article  PubMed  CAS  Google Scholar 

  43. Sinzinger H, Feigl W, Silberbauer K (1979) Prostacyclin generation in atherosclerotic arteries. Lancet 2: 469

    Article  PubMed  CAS  Google Scholar 

  44. Sirois P, Roy S, Borgeat P, Picard S, Vallerand P (1982) Evidence for a mediator role of thromboxane A2 in the myotropic action of leukotriene B4 (LTB4) on the guinea-pig lung. Prostaglandins Leukotrienes Med 8: 157–170

    Article  CAS  Google Scholar 

  45. Tada M, Kuzuya T, Inoue M, Kodama K, Mishima M, Yamada M, Inui M, Abe H (1981) Elevation of thromboxane B2 levels in patients with classic and variant angina pectoris. Circulation 64: 1107–1115

    Article  PubMed  CAS  Google Scholar 

  46. Terashita ZI, Fukui H, Hirata M, Terao S, Ohkawa S, Nishikawa K, Kikuchi S (1981) Coronary vasoconstriction and PGI2 release by leukotrienes in isolated guinea-pig hearts. Eur J Pharmacol 73: 357–361

    Article  CAS  Google Scholar 

  47. Tuvemo T, Strandberg K, Hamberg M, Samuelsson B (1976) Maintenance of the tone of the human umbilical artery by prostaglandin and thromboxane formation. Adv Prostaglandin Thromboxane Res 1: 425–428

    PubMed  CAS  Google Scholar 

  48. Vanderhoek JY, Bryant RW, Bailey JM (1980) Inhibition of leukotriene biosynthesis by the leukocyte product 15-hydroxy-5, 8, 11, 13-eicosatetraenoic acid. J Biol Chem 255: 10064–10065

    PubMed  CAS  Google Scholar 

  49. Vermylen J, Chamone DAF, Verstraete M (1979) Stimulation of prostacyclin release from vessel wall by Bay g 6575, an antithrombotic compound. Lancet 1: 518–520

    Article  PubMed  CAS  Google Scholar 

  50. Vesterqvist O, Edhag O, Green K, Henriksson P (1985) In vivo production of thromboxane in acute human myocardial infarction: a preliminary study. Thromb Res 37: 459–464

    Article  PubMed  CAS  Google Scholar 

  51. Weber PC, Scherer B, Larsson C (1977) Increase of free arachidonic acid by furosemide in man as the cause of prostaglandin and renin release. Eur J Pharmacol 41: 329–332

    Article  PubMed  CAS  Google Scholar 

  52. Wölbling RH, Aehringhaus U, Peskar BM, Peskar BA (1983) Release of slow-reacting substance of anaphylaxis from layers of guinea pig aorta. Prostaglandins 25: 823–828

    Article  PubMed  Google Scholar 

  53. Wong PYK, Sun F, McGiff JC (1978) Metabolism of prostacyclin in blood vessels. J Biol Chem 253: 5555–5557

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag, Berlin Heidelberg

About this paper

Cite this paper

Simmet, T., Peskar, B.A. (1987). Profile of Generation of Eicosanoids by Blood Vessels and the Heart. In: Gryglewski, R.J., Stock, G. (eds) Prostacyclin and Its Stable Analogue Iloprost. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71499-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71499-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71501-3

  • Online ISBN: 978-3-642-71499-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics