Thermoregulation by Individual Honeybees

  • Bernd Heinrich
Conference paper


Honeybee workers warm up by shivering prior to flight until thoracic temperature (Tth) reaches near 35°C. Patterns and levels of endothermy of bees not in flight depend on tasks, caste and apparently motivation. External vibrations of the thorax are not always evident during shivering, but the indirect flight muscles are mechanically active during heat production whether the bees are in flight or not. There is little or no thermoregulation during flight until high (greater than 35°C) air temperatures when evaporative cooling from the head withdraws heat from the working flight muscles in the thorax. Thermoregulation by individual bees appears to involve a lower set-point (near 35°C) in the thorax that regulates the onset of heat production, and a higher set-point (near 44°C) the head that regulates the onset of heat loss. The circulatory system contains loops in the petiole that conform to a counter-current heat exchanger that should aid to conserve heat in the thorax. Other hypotheses for the functions of these loops are presented. Indirect evidence suggests that drones have different patterns of endothermy and different mechanisms of heat loss than workers. However, this remains to be explored.


Heat Production Evaporative Cool Flight Muscle Indirect Flight Muscle Head Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Allen, M.D. 1955. Respiration rates of worker honeybees of different ages and at different temperatures. J. exp. Biol. 36: 92–101.Google Scholar
  2. (2).
    Arnhart, L. 1906. Die Bedeutung der Aortenschlangenwindungen des Bienenherzens. Zoolog. Anzeiger 30: 721–722.Google Scholar
  3. (3).
    Bastian, J., and Esch, H. 1970. The nervous control of the flight muscles of the honey bee. Z. vergl. Physiol. 67: 307–324.CrossRefGoogle Scholar
  4. (4).
    Boettiger, E.G. 1957. Triggering of the contractile process in insect fibrillar muscle. In Physiological Triggers, ed. T.H. Bullock, pp. 103–106. Washington: American Physiol. Soc.Google Scholar
  5. (5).
    Buchthal, F.; Weis-Fogh, T.; and Rosenfalk, P. 1957. Twitch contractions of isolated flight muscles of locusts. Acta physiol. scand. 39: 246–276.PubMedCrossRefGoogle Scholar
  6. (6).
    Cahill, K., and Lustick, S. 1976. Oxygen consumption and thermoregulation in Apis mellifera workers and drones. Comp. Biochem. Physiol. 55A: 355–357.Google Scholar
  7. (7).
    Cena, K., and Clark, J.A. 1972. Effect of solar radiation on temperatures of working honey bees. Nature 236: 222–223.Google Scholar
  8. (8).
    Cooper, P.; Schaffer, W.M.; and Buchmann, S.L. 19S5. Temperature regulation of honey bees (Apis mellifera) foraging in the Sonoran desert. J. exp. Biol. 114: 1–15.Google Scholar
  9. (9).
    Esch, H. 1960. Über die Körpertemperaturen und den Wärmhaushalt von Apis mellifica. Z. vergl. Physiol. 43: 305–335.Google Scholar
  10. (10).
    Esch, H. 1964. Über den Zusammenhang zwischen Temperatur, Aktionspotentialen und Thoraxbewegungen bei der Honigbiene (Apis mellifica L.) Z. vergl. Physiol. 48: 547–551.Google Scholar
  11. (11).
    Esch, H. 1976. Body temperature and flight performance of honey bees in a servomechanically controlled wind tunnel. J. comp. Physiol. 109: 265–277.CrossRefGoogle Scholar
  12. (12).
    Esch, H., and Bastian, J. 1968. Mechanical and electrical activity in the indirect flight muscles of the honey bee. Z. vergl. Physiol. 58: 429–440.Google Scholar
  13. (13).
    Esch, H.; Nactigall, W.; and Kogge, S.N. 1975. Correlations between aerodynamic output, electrical activity in the indirect flight muscles and wing positions of bees flying in a servomechanically controlled wind tunnel. J. comp. Physiol. 100: 147–159.CrossRefGoogle Scholar
  14. (14).
    Freudenstein, K. 1928. Das Herz und das Zirkulationssystem der Honigbiene (Apis mellifica L.) Z. Wiss. Zool. 132: 404–475.Google Scholar
  15. (15).
    Frisch, K.v. 1967. The Dance Language and Orientation of Bees. Cambridge, Mass.: Harvard University Press.Google Scholar
  16. (16).
    Heinrich, B. 1971. Temperature regulation in the sphinx moth, Manduca sexta. II. Regulation of heat loss by control of blood circulation. J. exp. Biol. 54: 153–166.Google Scholar
  17. (17).
    Heinrich, B. 1976. Heat exchange in relation to blood flow between thorax and abdomen in bumblebees. J. exp. Biol. 54: 561–585.Google Scholar
  18. (18).
    Heinrich, B. 1979a. Keeping a cool head: honeybee thermoregulation. Science 205: 1269–1271.PubMedCrossRefGoogle Scholar
  19. (19).
    Heinrich, B. 1979b. Thermoregulation of African and European honeybees during foraging, attack, and hive exits and returns. J. exp. Biol. 80: 217–229.Google Scholar
  20. (20).
    Heinrich, B. 1979c. Bumblebee Economics. Cambridge, Mass.: Harvard University Press.Google Scholar
  21. (21).
    Heinrich, B. 1980a. Mechanisms of body-temperature regulation in honeybees, Apis mellifera. I. Regulation of head temperature. J. exp. Biol. 85: 61–72.Google Scholar
  22. (22).
    Heinrich, B. 1980b. Mechanisms of body-temperature regulation in honeybees, Apis mellifera. II. Regulation of thoracic temperature at high air temperatures. J. exp. Biol. 85: 73–87.Google Scholar
  23. (23).
    Heinrich, B. 1981a. Energetics of honeybees swarm thermoregulation. Science 212: 565–566.PubMedCrossRefGoogle Scholar
  24. (24).
    Heinrich, B. 1981b. The mechanisms and energetics of honeybee swarm temperature regulation. J. exp. Biol. 91: 25–55.Google Scholar
  25. (25).
    Heinrich, B. 1984. The social physiology of temperature regulation in honeybees. In Fortschritte der Zoologie, eds. B. Hölldobler and M. Lindauer, Vol. 31, pp. 393–406. Stuttgart, New York: G. Fischer Verlag.Google Scholar
  26. (26).
    Heinrich, B., and Buchmann, S. 1986. Thermoregulatory physiology of the carpenter bee, Xylocopa varipuncta. J. comp. Physiol. B., in press.Google Scholar
  27. (27).
    Himmer, A. 1927. Der soziale Wärmhaushalt der Honigbiene. II. Die Wärme der Bienenbrut. Erlanger Tb. Bienenkd. 5: 1–32.Google Scholar
  28. (28).
    Kammer, A.E., and Heinrich, B. 1978. Insect flight metabolism. In Advances in Insect Physiology, eds. J.W.L. Beament, J.E. Treherne, and V.B. Wigglesworth, Vol. 13, pp. 133–228. London, New York: Academic Press.Google Scholar
  29. (29).
    Lindauer, M. 1954. Temperaturregulierung und Wasserhaushalt im Bienenstaat. Z. vergl. Physiol. 36: 391–432.Google Scholar
  30. (30).
    Louw, G., and Hadley, N. 1985. Water economy of the honeybee: a stoichiometric accounting. J. exp. Zool. 235: 147–150.Google Scholar
  31. (31).
    Machin, K.E.; Pringle, J.W.S.; and Tamasige, M. 1962. The physiology of insect fibrillar muscle. IV. The effect of temperature on a beetle flight muscle. Proc. Roy. Soc. B. 155: 493–499.CrossRefGoogle Scholar
  32. (32).
    Pissarew, W.J. 1898. Das Herz der Biene (Apis mellifera L.). Zoolog. Anzeiger 21: 282–283.Google Scholar
  33. (33).
    Schmaranzer, S. 1983. Thermovision bei trinkenden und tanzenden Honigbienen (Apis mellifera carnica). Verh. Dtsch. Zool. Ges. 1983: 319.Google Scholar
  34. (34).
    Snodgrass, R.E. 1956. Anatomy of the Honey Bee. Ithaca, N.Y.: Comstock Publishing Associates, Cornell University Press.Google Scholar
  35. (35).
    Vogt, F.D., and Heinrich, B. 1985. The response of workers to thermal stress in honeybee colony thermoregulation. Am. Zool. 25: Abstract No. 65.Google Scholar
  36. (36).
    Witherell, P.C. 1971. Duration of flight and of interflight time in drone honey bees, Apis mellifera. Ann. Ent. Soc. Amer. 64: 609–612.Google Scholar
  37. (37).
    Zander, E. 1911. Der Bau der Biene. Stuttgart: Verlag Eugen Ulmer.Google Scholar

Copyright information

© Springer-Verlag Berlin Heildelberg 1987

Authors and Affiliations

  • Bernd Heinrich
    • 1
  1. 1.Department of ZoologyUniversity of VermontBurlingtonUSA

Personalised recommendations